
Aggressive Performance
Optimizations for 3D Graphics
Aggressive Performance
Optimizations for 3D Graphics

Haim Barad (organizer),Haim Barad (organizer),
Eric Haines, Dean Macri,Eric Haines, Dean Macri,

Kim Pallister and Alex KlimovitskiKim Pallister and Alex Klimovitski

Concept #1: Aggressive
Performance Optimizations
Concept #1: Aggressive
Performance Optimizations

““Dem’sDem’s powerful words…”powerful words…”
Could also be called “Aggressively Pursuing Could also be called “Aggressively Pursuing

Optimal Performance”Optimal Performance”
• Aggressive – use all methods, knowledge & tools

available to achieve…

• Pursuing – it’s an iterative process

• Optimal – there doesn’t exist anything better…

• Performance – make it FAST!

Most SW isn’t this bad, but…Most SW isn’t this bad, but…

RAISING SPOON TO MOUTH
(A) pulls string (B), thereby jerking ladle (C), which throws cracker (D) past parrot (E). Parrot jumps after cracker,

and perch (F) tilts, upsetting seeds (G) into pail (H). Extra weight in pail pulls cord (I), which opens and lights
automatic cigar lighter (J), setting off skyrocket (K), which causes sickle (L) to cut string (M) and allows pendulum

with attached napkin (N) to swing back and forth, thereby wiping off your chin.

Concept #2: “Bad software
slows down good hardware…”
Concept #2: “Bad software
slows down good hardware…”

AlgorithmicAlgorithmic
• Avoid unnecessary work

• Do necessary work in a smart way

ArchitecturalArchitectural
• Know your target platform

CodingCoding
• Use code wisely

Levels of optimizationsLevels of optimizations

AlgorithmicAlgorithmic
• Biggest returns by doing it SMART!

• Must be done first

ArchitecturalArchitectural
• Leverage characteristics & capabilities of the

platform

CodingCoding
• Write code, analyze, recode, analyze… squeeze!

Concepts are widely applicableConcepts are widely applicable

Not just to IntelNot just to Intel** architecturearchitecture
• Algorithmic

• Architectural

• SIMD

• Memory optimizations

Applicable to all architectures & platforms!Applicable to all architectures & platforms!
• From server to embedded CPUs…
*All brands and names are the property of their respective owner*All brands and names are the property of their respective owners. s.

ScheduleSchedule

8:30 Welcome and Overview 8:30 Welcome and Overview -- BaradBarad
8:45 3D Algorithmic Optimizations 8:45 3D Algorithmic Optimizations -- HainesHaines
10:00 Morning Break10:00 Morning Break
10:15 Implementations for Bandwidth Reduction 10:15 Implementations for Bandwidth Reduction -- PallisterPallister
11:30 Architecture &11:30 Architecture & MicroarchitecturalMicroarchitectural Issues Issues -- BaradBarad
12:00 Lunch12:00 Lunch
1:30 Optimizations Lab 1:30 Optimizations Lab -- KlimovitskiKlimovitski
3:00 Afternoon Break3:00 Afternoon Break
3:15 Analysis Tools & Lab 3:15 Analysis Tools & Lab –– MacriMacri
4:25 3D Optimizations for 4:25 3D Optimizations for PDAsPDAs -- BaradBarad
4:55 Summary, Wrap Up, Questions, Feedback 4:55 Summary, Wrap Up, Questions, Feedback -- AllAll

Skills needed for labs…Skills needed for labs…

Not too much is neededNot too much is needed
• Basic understanding of C++

• Some experience with building and analyzing
applications

Course materials and updates are onlineCourse materials and updates are online
• http://Optimizations.org

Who’s who…Who’s who…

Haim Barad Haim Barad –– IntelIntel
• barad@acm.org

Eric Haines Eric Haines –– AutodeskAutodesk
• erich@acm.org

Dean Macri Dean Macri –– IntelIntel
• dean.p.macri@intel.com

Kim Pallister Kim Pallister –– IntelIntel
• kim.pallister@intel.com

Alex Klimovitski Alex Klimovitski –– IntelIntel
• Alex.klimovitski@intel.com

3D Algorithmic Optimizations

Eric Haines
Autodesk, Inc.
erich@acm.org

3D Algorithmic Optimizations

Eric Haines
Autodesk, Inc.
erich@acm.org

Moore’s Law: 1.7x increase in CPU speed
per year

Graphics accelerators are 2x to 4x
(Poulton at UNC-CH gives 2.4x per year
since 1986)

Moore’s Law: 1.7x increase in CPU speed
per year

Graphics accelerators are 2x to 4x
(Poulton at UNC-CH gives 2.4x per year
since 1986)

TrendsTrends

Faster than Moore’s LawFaster than Moore’s Law

Peak
Performance
(∆'s/sec)

Year

HP CRX
SGI Iris

SGI GT

HP VRX

Stellar GS1000

SGI VGX
HP TVRX

SGI SkyWriter

SGI

E&S
F300

One-pixel polygons (~10M polygons @ 30Hz)

SGI
RE2

RE1
Megatek

86 88 90 92 94 96 98 00
104

105

106

107

108

109

UNC Pxpl4

UNC Pxpl5

UNC/HP PixelFlow

Flat
shading

Gouraud
shading

Antialiasing

Slope ~2.4x/year
(Moore's Law ~ 1.7x/year) SGI

IR E&S
Harmony

SGI
R-Monster

Division VPX

E&S Freedom

Accel/VSIS
Voodoo

Glint

Division
Pxpl6

PC Graphics

Textures

SGI
Cobalt

Nvidia TNT
3DLabs

Graph courtesy of Professor John Poulton

GeForce

104

105

106

107

108

109

ATI
Radeon 256

Why care about faster
algorithms for CG?
Why care about faster
algorithms for CG?

Simple answer: never too much speed!Simple answer: never too much speed!
• Screen resolution (4000 x 2500 ?)

• Frame rate (72 Hz)

• Realism (photorealism might be the upper limit...)

• Scene complexity (no upper limit) !

Algorithm or Optimization?

As time goes on, the algorithm is more As time goes on, the algorithm is more
important than the optimization...important than the optimization...

Example: Compare Example: Compare BubbleSort BubbleSort // QuickSortQuickSort
• BubbleSort will never win (well, almost never…)

no matter how much you optimize the code

However, then code and memory However, then code and memory
optimizations can make optimizations can make QsortQsort even faster!even faster!

Application Side AlgorithmsApplication Side Algorithms

Push less across the bus:Push less across the bus:
•• Culling techniquesCulling techniques
•• Share vertices: strips, vertex buffersShare vertices: strips, vertex buffers
•• Compress geometric description (Compress geometric description (DeeringDeering))
•• Use other descriptions (images,Use other descriptions (images, BeziersBeziers, ,

subdivision surfaces)subdivision surfaces)
•• Send simplified models (same amount of Send simplified models (same amount of

fill, less vertices)fill, less vertices)

Culling TechniquesCulling Techniques

“To cull” means “to select from group”“To cull” means “to select from group”
In graphics context: do not process data that In graphics context: do not process data that

will not contribute to the final imagewill not contribute to the final image
The “group” is the entire scene, and the The “group” is the entire scene, and the

selection is a subset of the scene that we selection is a subset of the scene that we
do not consider to contributedo not consider to contribute

Culling: OverviewCulling: Overview

•• Backface Backface cullingculling
•• Hierarchical viewHierarchical view--frustum cullingfrustum culling
•• Portal cullingPortal culling
•• Detail cullingDetail culling
•• Occlusion cullingOcclusion culling

Culling ExamplesCulling Examples

view frustum detail

backface

portal occlusion

Backface CullingBackface Culling

Simple technique to discard polygons that Simple technique to discard polygons that
faces away from the viewerfaces away from the viewer

Can be used for: Can be used for:
• closed surface (example: sphere)

• or whenever we know that the backfaces never
should be seen (example: walls in a room)

Backface culling (cont’d)Backface culling (cont’d)

Often implemented for you in the APIOften implemented for you in the API
OpenGL: OpenGL: glCullFaceglCullFace(GL_BACK);(GL_BACK);

How to determine what faces away?How to determine what faces away?
First, must have consistently oriented First, must have consistently oriented

polygons, e.g., counterclockwisepolygons, e.g., counterclockwise

0

1

2

front facing
01

2
back facing

How to cull backfacesHow to cull backfaces

Two methods (screen space, eye space)Two methods (screen space, eye space)

screen space

1

0

2

front
0

1

2

back

front

back
eye

View-Frustum CullingView-Frustum Culling

Bound every “natural” group of primitives Bound every “natural” group of primitives
by a simple volume (e.g., sphere, box)by a simple volume (e.g., sphere, box)

If a bounding volume (BV) is outside the view If a bounding volume (BV) is outside the view
frustum, then the entire contents of that frustum, then the entire contents of that
BV is also outside (not visible)BV is also outside (not visible)

In the APP stage: avoid further processing of In the APP stage: avoid further processing of
such BV’s and their contentssuch BV’s and their contents

The Scene GraphThe Scene Graph
DAG DAG –– directed directed acyclic acyclic graphgraph

• Simply an n-ary tree without loops

internal node=

Can we accelerate view frustum
culling further?
Can we accelerate view frustum
culling further?

Do what we always do in graphics…Do what we always do in graphics…
Use hierarchies [Clark76] !Use hierarchies [Clark76] !
Build some kind of tree hierarchicallyBuild some kind of tree hierarchically
•• Could use the existing scene graphCould use the existing scene graph
•• Could build a more optimal oneCould build a more optimal one

• Tradeoff: speed vs. editability

Example of Hierarchical View
Frustum Culling
Example of Hierarchical View
Frustum Culling

root

camera

Portal CullingPortal Culling
Images courtesy of David P. Luebke and Chris Georges

Culled 20Culled 20--50% of the 50% of the polyspolys in viewin view
SU: from slightly better to 10xSU: from slightly better to 10x

Portal culling examplePortal culling example
In a building from aboveIn a building from above
Circles are objects to be renderedCircles are objects to be rendered

Portal Culling AlgorithmPortal Culling Algorithm

Divide into cells with portals (build graph)Divide into cells with portals (build graph)
For each frame:For each frame:

• Locate cell of viewer and init 2D AABB to whole
screen

• * Render current cell with VF cull w.r.to AABB

• Traverse to closest cells (through portals)

• Intersection of AABB & AABB of traversed portal

• Goto *

Portal OverestimationPortal Overestimation

To simplify:To simplify:

actual portal overestimated portal

Portal Culling AlgorithmPortal Culling Algorithm

When to exit:When to exit:
• When the current AABB is empty

• When we do not have enough time to render a cell
(“far away” from the viewer)

Also: mark rendered objectsAlso: mark rendered objects
Source (for Performer): Source (for Performer):

http://www.http://www.cscs..virginiavirginia..eduedu/~/~luebkeluebke//

Demo: Surrender’s Umbra BuildingDemo: Surrender’s Umbra Building

��MovementMovement

��RotationRotation

��MenusMenus

Q W EQ W E
A S DA S D
(and “spacebar” for speed)(and “spacebar” for speed)

�������� ��������

RightRight
mousemouse

Detail CullingDetail Culling

Idea: objects whose projected BV occupy Idea: objects whose projected BV occupy
less than N pixels are culledless than N pixels are culled

This is anThis is an approximativeapproximative algorithm as the algorithm as the
things you cull away may actually things you cull away may actually
contribute to the final imagecontribute to the final image

Advantage: tradeAdvantage: trade--off quality/speedoff quality/speed

Example of Detail CullingExample of Detail Culling

detail culling OFF
Not much difference, but 80Not much difference, but 80--400% faster.400% faster.
Good when movingGood when moving

detail culling ON

Images courtesy of ABB Robotics Product, created by Ulf Assarsson

ProjectionProjection

Projection gets halved when distance is Projection gets halved when distance is
doubleddoubled

eye

Projection (cont’d)Projection (cont’d)

dot(dot(dd, (, (cc--vv)) is distance along)) is distance along dd
pp==nrnr//dot(dot(dd, (, (cc--vv)) is estimation of projected radius)) is estimation of projected radius
π π pp2 2 is the areais the area

(eye) v

(near plane) n

d (normalized view direction)

r

c

Quick Hack Occlusion CullingQuick Hack Occlusion Culling

Use fog to fade things out as they get far Use fog to fade things out as they get far
away away –– the objects are occluded by the fog, the objects are occluded by the fog,
so no longer have to be rendered.so no longer have to be rendered.

“Real” Occlusion Culling“Real” Occlusion Culling

Main idea: Objects that Main idea: Objects that
lies completely lies completely
“behind” another set “behind” another set
of objects can be of objects can be
culledculled

We present only one We present only one
algorithm here; there algorithm here; there
are many schemesare many schemes

ExampleExample

final image

VISUALIZE fx’s Occlusion Culling
Algorithm
VISUALIZE fx’s Occlusion Culling
Algorithm

Algorithm (extension to OpenGL):Algorithm (extension to OpenGL):
• Scan convert faces of object, typically bounding

box of complex object, but do not write Z

• Get boolean which says if there was a Z-value from
scan conversion that was closer than that of the
Z-buffer (NVIDIA: get pixels seen count)

• If seen, render complex object

VISUALIZE fx’s Occlusion Culling
Algorithm (cont’d)
VISUALIZE fx’s Occlusion Culling
Algorithm (cont’d)

Implications:Implications:
• If an object is occluded, then we gain (hopefully) a

lot of performance since we only scan convert one
Bounding Box (BB) instead of the entire object

• If BB is not occluded, then we have to render the
object, and we lose a little performance

Drawing order matters: drawing frontDrawing order matters: drawing front--toto--
back gives more occlusionback gives more occlusion

Occlusion culling algorithmOcclusion culling algorithm

Use some kind of occlusionUse some kind of occlusion
representation representation OORR

for each object for each object gg do:do:
if(not Occluded(if(not Occluded(OOR R ,,gg))))

render(render(gg););
update(update(OOR R ,,gg););

end;end;
end;end;

Occlusion culling algorithm
example
Occlusion culling algorithm
example

Process from front to backProcess from front to back
Maintain an occlusion horizon (yellow)Maintain an occlusion horizon (yellow)

Occlusion culling algorithm
example
Occlusion culling algorithm
example

To process tetrahedron (which is behind To process tetrahedron (which is behind
greygrey objects):objects):
• find axis-aligned box of projection

• compare against occlusion horizon

culled

Occlusion culling algorithm
example
Occlusion culling algorithm
example

When an object is considered visible:When an object is considered visible:
Add its “occluding power” to the occlusion Add its “occluding power” to the occlusion

representationrepresentation

Demo: Surrender’s Umbra UrbanDemo: Surrender’s Umbra Urban

��MovementMovement

��RotationRotation

��PanPan

Q W EQ W E
A S DA S D
(and “spacebar” for speed)(and “spacebar” for speed)

�������� ��������

BothBoth
buttonsbuttons

16k buildings, 4k cars

Polygons vs. ImagesPolygons vs. Images

Which is better to send to the graphics Which is better to send to the graphics
accelerator?accelerator?

Bandwidth AnalysisBandwidth Analysis

Each vertex has a position, normal, and one Each vertex has a position, normal, and one
texture coordinate pair (at least).texture coordinate pair (at least).

Triangle loop itself needs 3 bytes (for a mesh Triangle loop itself needs 3 bytes (for a mesh
with <= 256 vertices)with <= 256 vertices)

Polygonal mesh: each vertex shared by 6 Polygonal mesh: each vertex shared by 6
triangles.triangles.

Bandwidth Analysis (cont.)Bandwidth Analysis (cont.)

Triangle takes:Triangle takes:
3*(3 XYZ floats + 3 normal floats + 2 UV 3*(3 XYZ floats + 3 normal floats + 2 UV

floats) / 6 + 3 bytes for each loop =floats) / 6 + 3 bytes for each loop =
19 bytes per triangle19 bytes per triangle

There are 3 bytes per pixel (RGB)There are 3 bytes per pixel (RGB)
So a triangle must So a triangle must be visible atbe visible at 19/3 ~= 6 19/3 ~= 6

pixels to cost less than sending the pixels.pixels to cost less than sending the pixels.
(idea by Steve (idea by Steve HollaschHollasch))

ImpostorsImpostors

For a far away object, render it once and For a far away object, render it once and
send down the image as a textured send down the image as a textured
quadrilateral with alpha transparency.quadrilateral with alpha transparency.

NailboardsNailboards

Nailboards Nailboards are impostors with relative Z are impostors with relative Z
depth information stored. Allows overlap:depth information stored. Allows overlap:

Images courtesy Gernot Schaufler

Imposters Nailboards

Simplified Models/LODSimplified Models/LOD

Levels of Detail (LOD): when an object is far Levels of Detail (LOD): when an object is far
away, use a simpler version of it.away, use a simpler version of it.

Some types of Some types of LODsLODs::
•• Discrete Discrete LODsLODs
•• Alpha Alpha LODsLODs
•• Geomorph LODsGeomorph LODs

Discrete LODsDiscrete LODs

Multiple versions of same model.Multiple versions of same model.

Distance or screen size ranges are used:Distance or screen size ranges are used:

eyeeye

R1 R2 R3R1 R2 R3

Level-of-Detail RenderingLevel-of-Detail Rendering
Use different levels of detail at different Use different levels of detail at different

distances from the viewerdistances from the viewer
More triangles closer to the viewerMore triangles closer to the viewer

LOD renderingLOD rendering

Not much visual difference, but a lot fasterNot much visual difference, but a lot faster

� Use area of projection of BV to select
appropriate LOD

Far LOD renderingFar LOD rendering

When the object is far away, replace with a When the object is far away, replace with a
quad of some colorquad of some color

When the object is When the object is really far awayreally far away, do not , do not
render it (detail culling)!render it (detail culling)!

Drawbacks of Discrete LODsDrawbacks of Discrete LODs

Each LOD model must be modeled Each LOD model must be modeled
separately.separately.

Popping often occurs when switching from Popping often occurs when switching from
one model to another.one model to another.

Blending between models by having Blending between models by having
overlapping ranges may be possible, but overlapping ranges may be possible, but
then then bothboth models must be rendered. models must be rendered.

Alpha LODAlpha LOD

A simple idea: fade out the object as it gets A simple idea: fade out the object as it gets
beyond a certain range, until gone.beyond a certain range, until gone.

The cone
fades

Geomorph LODGeomorph LOD

The ideal is to smoothly transition between The ideal is to smoothly transition between
two different two different LODsLODs..

Geomorph LODs Geomorph LODs do this by associating every do this by associating every
vertex on the more complex model with vertex on the more complex model with
some vertex on the simpler model.some vertex on the simpler model.

As the blend zone is traversed, one LOD As the blend zone is traversed, one LOD
model morphs into the other.model morphs into the other.

Geomorph LODs ExampleGeomorph LODs Example

eyeeye

geomorphgeomorph

R1R1

R2R2 R3R3

Making GeomorphsMaking Geomorphs

Progressive Meshes, a.k.a. Simplification: Progressive Meshes, a.k.a. Simplification:
starting with a complex model, simplify by starting with a complex model, simplify by
removing an edge in the mesh.removing an edge in the mesh.

v u
vedge collapse

Bad Edge CollapsesBad Edge Collapses

Not all edges can be collapsed during Not all edges can be collapsed during
simplification:simplification:

vu

edge
crossing

edge collapse

Simplification MethodsSimplification Methods

Each edge is ranked by its effect on the Each edge is ranked by its effect on the
model.model.

e
c c e

Edge FunctionsEdge Functions

Which edge is least important is a nonWhich edge is least important is a non--trivial trivial
function, and is perception based.function, and is perception based.
• Example: eyes and mouth more important.

Images courtesy Hugues Hoppe

Melax DemonstrationMelax Demonstration

(space-bar to go to next
model, “Enter” to select)

Terrain SimplificationTerrain Simplification

One idea is to simplify the model once:One idea is to simplify the model once:

Images courtesy Michael Garland

then turn the reduced detail into texturethen turn the reduced detail into texture

Ulrich DemonstrationUlrich Demonstration

left mouse - rotate

right mouse - move

w - wireframe toggle

t - texture toggle

p - follow terrain

-/= - change detail

m - animated move

Screen Size DeterminationScreen Size Determination

Which LOD to use is related to the number of Which LOD to use is related to the number of
pixels it covers. Methods:pixels it covers. Methods:

Draw the object, count the pixels (dumb).Draw the object, count the pixels (dumb).
Use a box around the object, transform to Use a box around the object, transform to

screen, use area of rectangle.screen, use area of rectangle.
Find area of box itself on screen Find area of box itself on screen

((SchamlstiegSchamlstieg and and ToblerTobler, , jgtjgt 1999).1999).

Ideal: get area Ideal: get area
covered by object.covered by object.

Typical: get 2DTypical: get 2D
screen rectangle.screen rectangle.

Compromise: get bounding box’s area.Compromise: get bounding box’s area.

Size Determination IllustratedSize Determination Illustrated

Algorithm OverviewAlgorithm Overview

SchmalsteigSchmalsteig and and Tobler Tobler (journal of graphics (journal of graphics
tools, 1999):tools, 1999):

Determine how many (1, 2, or 3) and which Determine how many (1, 2, or 3) and which
faces of the box are visible.faces of the box are visible.

Project the vertices of the silhouette edge to Project the vertices of the silhouette edge to
the screen (4 or 6 vertices).the screen (4 or 6 vertices).

Compute the area from these points.Compute the area from these points.

Example BoxesExample Boxes

Example BoxesExample Boxes

silhouettes

ImplementationImplementation

For each pair of planes defining the box For each pair of planes defining the box
along one axis, classify the eye location as along one axis, classify the eye location as
above, below, or between these planes.above, below, or between these planes.

3*3*3 = 27 possibilities; using bit codes for 3*3*3 = 27 possibilities; using bit codes for
each compare gives a 43 entry table.each compare gives a 43 entry table.

For each (possible) entry, give the list of the For each (possible) entry, give the list of the
4 or 6 silhouette edge vertices.4 or 6 silhouette edge vertices.

Compute the area: done!Compute the area: done!

More InformationMore Information

The SIGGRAPH 2001 notes for this and other The SIGGRAPH 2001 notes for this and other
courses.courses.

Book’s web site Book’s web site
http://www.realtimerendering.com/http://www.realtimerendering.com/

Surrender’s Umbra occlusion & portal demos and Surrender’s Umbra occlusion & portal demos and
manual: manual: http://www.hybrid.fi/umbra/http://www.hybrid.fi/umbra/, and at , and at
Criterion’s Criterion’s Renderware Renderware booth (look for PVS)booth (look for PVS)

Code for the projected area algorithm is at Code for the projected area algorithm is at
http://www.acm.org/jgt/http://www.acm.org/jgt/

Morning breakMorning break

Noise Based Procedural Content
and the Humble Modem
Noise Based Procedural Content
and the Humble Modem

Kim PallisterKim Pallister
Technical Marketing EngineerTechnical Marketing Engineer

Intel CorporationIntel Corporation
(Dean(Dean MacriMacri, Technical Marketing Engineer, co, Technical Marketing Engineer, co--author)author)

kimkim..pallisterpallister@@intelintel.com.com
Third-party brands and names are property of their respective owners.

Copyright © 2001 Intel Corporation. All rights reserved

Problem StatementProblem Statement
The problemThe problem

• Rich, complex 3D scenes have large datasets

• Internet is poor medium for distributing large datasets

The solutionThe solution
• Many natural & man-made objects exhibit self-

similarity - maybe ‘algorithmically creatable’

• Use the processor power at the client end to generate
some content procedurally.

What Is ‘Noise’?What Is ‘Noise’?
Adds ‘imperfection’ to algorithmic contentAdds ‘imperfection’ to algorithmic content

• makes results more natural-looking

Seeded pseudoSeeded pseudo--random number generatorrandom number generator
• Seeded because we need to be able to re-generate the same

result each time

What is What is Perlin Perlin noise?noise?
• Simply a smoothed version of the same random noise

• The smoothing gets rid of unnatural harsh transitions

Pre- and post- smoothed noisePre- and post- smoothed noise

Noise as function parameterNoise as function parameter

Interesting results occur when Interesting results occur when
noise is fed into functionsnoise is fed into functions

Some simple functions can be Some simple functions can be
offloaded to HW, others will offloaded to HW, others will
need to be done in SWneed to be done in SW

No substitutes for experimentationNo substitutes for experimentation

Function ExamplesFunction Examples

1/f(noise) (fractal sum) 1/f(noise) (fractal sum) -- clouds, fogclouds, fog
• Clamping or other post processing is useful too

Sin(x+1/f (noise)) Sin(x+1/f (noise)) -- marblemarble

Application areas: TexturingApplication areas: Texturing

2D2D
• Base textures

• detail textures

• specularity maps

3D3D
• Fog volumes

Applications areas:ModelingApplications areas:Modeling

Procedurally created modelsProcedurally created models
• Terrain, Trees

Procedurally created scenesProcedurally created scenes
• distribution of trees, people in a

mall, telephone poles

Functions + Noise = Great ResultsFunctions + Noise = Great Results
Height = Noise(X,Y) Height = Noise(X,Y)

Height = Amplitude * Height = Amplitude * PowPow(Noise(X,Y), Exp)(Noise(X,Y), Exp)

Now we can vary
these using noise!

Procedural content demoProcedural content demo

Application areas: Animation
and events
Application areas: Animation
and events

Great for character animationGreat for character animation
• Head nods, shifting weight, blinking eyes

Environmental thingsEnvironmental things
• When the weather changes

• How often cars drive by

• When does the cable guy show up :-)

DemoDemo

IssuesIssues

Numerical error on different systems can have Numerical error on different systems can have
different resultsdifferent results
• Not a big deal for textures

• Could be a big problem for procedural geometry, events,
animation

• Especially in multi-user environements

AlgorithmAlgorithm vsvs artistartist
• Results may not be what artist intended

• Need to integrate into tools

Call to actionCall to action

Experiment with procedural content Experiment with procedural content
creationcreation

Don’t limit it only to textures.Don’t limit it only to textures.
Character animation is a natural fitCharacter animation is a natural fit

ResourcesResources

Ken Ken PerlinsPerlins HardcoreGDCHardcoreGDC talk and animated face demotalk and animated face demo
• http://www.noisemachine.com

• http://mrl.nyu.edu/~perlin/facedemo/

Modeling & Texturing Modeling & Texturing -- A Procedural ApproachA Procedural Approach
• Ebert, David (ed), Morgan Kaufmann,ISBN 0-12-228730-4

Haim Barad’s procedural texture article
• www.gamasutra.com/features/programming/19980501/mmxtexturing_01.htm

Intel Developer Services articles
• www.intel.com/ids/

Game Programming Gems 2Game Programming Gems 2
• Deloura, Mark et al, Charles River Media, ISBN 1-58450-054-0

3D API Usage and Optimizing for
Variable Platforms
3D API Usage and Optimizing for
Variable Platforms

Kim PallisterKim Pallister
Technical Marketing EngineerTechnical Marketing Engineer

Intel CorporationIntel Corporation

kimkim..pallisterpallister@@intelintel.com.com

Third-party brands and names are property
of their respective owners.

Why multiWhy multi--platform optimizationplatform optimization
Common platform performance issuesCommon platform performance issues
Design guidelinesDesign guidelines
API usageAPI usage
ProfilingProfiling
Call to actionCall to action

AgendaAgenda

Why Variable Platform
Optimization?
Why Variable Platform
Optimization?

Software increasingly needs to by multiSoftware increasingly needs to by multi--
platformplatform
• Multi-platform games, browser plug-ins, etc

Some platforms are variable in natureSome platforms are variable in nature
• Especially true for PC: CPU horsepower, ISA,

memory, graphics subsystem

Need to have applications that run well Need to have applications that run well
across the board and/or adapt to targetacross the board and/or adapt to target

Performance and the APIPerformance and the API

High performance used to mean hand coding top to High performance used to mean hand coding top to
bottom, but...bottom, but...

MultiMulti--target apps foster API dependencytarget apps foster API dependency
API provides baseline functionalityAPI provides baseline functionality

• Some of that functionality may be emulated

API may have multiple methods for accepting data API may have multiple methods for accepting data
& commands& commands
• Not all of which are created equal!

So the API will abstract the target?So the API will abstract the target?

Not quite…Not quite…
Platform architectures may vary so much Platform architectures may vary so much

that app architecture & API usage changethat app architecture & API usage change
Examples: Examples:

• PC application vs PlayStation2* application

• Shader/Materials on PC platform

The API can only do so much…The API can only do so much…

*Third-party brands and names are property of their respective owners.

Sub-optimal performance causesSub-optimal performance causes
Assuming the general from the specificAssuming the general from the specific

• (Works on the programmers machine, let’s ship it)

Poor DesignPoor Design
Poorly understood system architecture (design)Poorly understood system architecture (design)
API Issues:API Issues:

• Start-up code done per frame

• Functionality misunderstanding

• Broken concurrency

• Poor data flow/data copies, Lack of batching

• Excessive state changes

Coding for the coder, not the HW/APICoding for the coder, not the HW/API

Design GuidelinesDesign Guidelines

Know your platform architecture and variabilityKnow your platform architecture and variability
• Make high level design decisions based on this

• How much can the API abstract? Where are different code
paths needed?

Know your API’s functionalityKnow your API’s functionality
• What’s fast? What’s slow? What works well on each platform

and how does it vary across platforms?

Know your limitsKnow your limits

API Issues: Don’t do it if you don’t
need to
API Issues: Don’t do it if you don’t
need to

StartStart--up code should be done…up code should be done…
• (Hint: not per frame)

Creation of resources should be done ahead of timeCreation of resources should be done ahead of time
• Vertex Buffers/Index Buffers

• Texture Surfaces

• Vertex/Pixel Shaders

• State Blocks

API Issues: FunctionalityAPI Issues: Functionality

Poorly understood API functionalityPoorly understood API functionality
• What are the optimal functions? How do/could they

work?

• What path does the data take?

• E.g. How much of a VB transformed on HW vs SW?

Assumed API functionalityAssumed API functionality
Lack of trust in API functionalityLack of trust in API functionality
Untested platformsUntested platforms

API Usage Issues: ConcurrencyAPI Usage Issues: Concurrency

Graphics subsystem operates in parallel with Graphics subsystem operates in parallel with
host CPUhost CPU
• As long as one isn’t waiting for the other

Typical causes for loss of concurrencyTypical causes for loss of concurrency
• Trying to read data back from graphics device

• Accessing shared resources at the wrong time

API Usage Issues: ConcurrencyAPI Usage Issues: Concurrency

Avoid touching Avoid touching vidmemvidmem bits (locking) bits (locking)
• Forces CPU to idle while command queue flushed

Hand off vertex data in large chunksHand off vertex data in large chunks
• definitely over 100 verts unless unavoidable

• diminishing returns over 2000 vertices

Beware API calls that can stop concurrencyBeware API calls that can stop concurrency
• e.g. GetDC in DirectDraw will issue a lock

• (GDI is always a no-no)

API usage issues: Data
management
API usage issues: Data
management

Natural assumption that app can do best job Natural assumption that app can do best job
of managing vertex & texture memoryof managing vertex & texture memory
• This is increasingly false!

Sub optimal API usage will cost youSub optimal API usage will cost you
• Extra copies of data will result in performance &

memory overhead

• Data may not be in the optimal place for target
system (e.g. optimized sysmem VB’s)

API usage issues: Data
management
API usage issues: Data
management

Allow the API & driver to manage memory for youAllow the API & driver to manage memory for you
• Yes, you can find ways to outperform the API...

• ..they’ll work on your system but break on others

Use cleanest semantics for data hand offUse cleanest semantics for data hand off
• e.g. Direct3D: Index/Vertex buffers, OpenGL: Compiled

vertex arrays

• Make sure to use the right creation flags!

• Use indexed prims, use strips where you can

*Third-party brands and names are property of their respective owners.

API usage models: General
optimization tips
API usage models: General
optimization tips

Above all, maintain concurrencyAbove all, maintain concurrency
Avoid data copying and mismanagementAvoid data copying and mismanagement
Batch data at 100Batch data at 100--2000 2000 vertsverts per call as much as per call as much as

possiblepossible
Avoid state changes, sort by state change Avoid state changes, sort by state change
Avoid redundant state changesAvoid redundant state changes
Never Get() anythingNever Get() anything

• View HW as one-way

Use Clear(), not Use Clear(), not tri’stri’s

State changes costs
(most to least costly)
State changes costs
(most to least costly)

VS/PS changeVS/PS change
VB/FVF/VA changeVB/FVF/VA change
Texture changeTexture change
Render state setupRender state setup
SetRenderTargetSetRenderTarget (Direct3D only)(Direct3D only)
New matricesNew matrices
Fog table statesFog table states
Update light statesUpdate light states
Turning lights on/offTurning lights on/off

Share
Where

Possible

*Third-party brands and names are property of their respective owners.

SW vs HWSW vs HW

Some functionality may be found in HW on some systems, Some functionality may be found in HW on some systems,
SW in othersSW in others
• Some things in SW may still be fast (e.g. Vertex Shaders under

DirectX8)

Trying to theorize about HW performance based on SW Trying to theorize about HW performance based on SW
assumptions will rarely workassumptions will rarely work
• e.g. Vert & Texel caches throw off BW calculations

• e.g. Texture swizzling

• No substitute for testing (IHVs can help here!)

Use API & HW friendly methodsUse API & HW friendly methods
• E.g. DrawPrimVB vs DrawPrimUP

*Third-party brands and names are property of their respective owners.

Tools for API Performance
Analysis
Tools for API Performance
Analysis

Roll your ownRoll your own
• Offers the best control over profiling, potential for low

overhead

• Lots of work, could introduce error

Off the shelfOff the shelf
• Several exist

• Minimal overhead added by profiler

• Robust UI and analysis tools mean testing can be done by
non-programmers

Limits of ProfilersLimits of Profilers

Where time is spent isn’t necessarily where the Where time is spent isn’t necessarily where the
bottleneck isbottleneck is
• Runtime could be spinning while waiting for HW

Understand difference between Understand difference between
fillratefillrate/throughput/CPU limited/throughput/CPU limited
• May need to modify your tests to determine cause

Is the bottleneck in the runtime or the way that Is the bottleneck in the runtime or the way that
you use it?you use it?

LAB ExerciseLAB Exercise

Profiling API Usage of a Sample 3D Profiling API Usage of a Sample 3D
applicationapplication

Call to ActionCall to Action

Have faith in the API & driversHave faith in the API & drivers
• ...But don’t trust them

Test often! (Not only 2wks before shipping!)Test often! (Not only 2wks before shipping!)
• Compare to past results throughout

Understand what’s under the hoodUnderstand what’s under the hood
• Understanding API data & program flow allows spotting of potential

problems

• Helps you design correctly

• Use the tools, talk to the vendors

Profile as many permutations as possibleProfile as many permutations as possible
• No substitute for profiling on the target system

• Leverage available tools

ResourcesResources
Microsoft Direct3D FAQMicrosoft Direct3D FAQ

• msdn.microsoft.com/library/techart/dxfaq.htm

OpenGL performance notesOpenGL performance notes
• www.opengl.org

Real Time RenderingReal Time Rendering
• Moller, Haines - ISBN 1-56881-101-2

Intel Developer ServicesIntel Developer Services
• http://www.intel.com/ids/

Resources for Profiling ToolsResources for Profiling Tools
Intel Intel VtuneVtune

• http://developer.intel.com/vtune/

3D Pipeline 3D Pipeline GLAnalyzeGLAnalyze
• Supports OpenGL applications

• http://www.3dpipeline/products/gl/glanalyze.htm

Nvidia Nvidia stats driver (registered developers only)stats driver (registered developers only)
• http://www.nvidia.com/developer.nsf

IntelligraphicsIntelligraphics IntellibenchIntellibench
• Supports DirectX (older versions only)

• http://www.intelligraphics.com/ibench.htm

Bandwidth reduction: Compact
culling and Bezier tessellation
Bandwidth reduction: Compact
culling and Bezier tessellation

Haim BaradHaim Barad
Staff EngineerStaff Engineer

Intel CorporationIntel Corporation

barad@barad@acmacm.org.org

Compact Backface CullingCompact Backface Culling

HighlightsHighlights
• Reduce the storage/bandwidth required for facet

normals by 50%

• Perform culling at front-end in object space

• Optimized for SIMD computation

Efficient CullingEfficient Culling

Store facet normals to avoid calculations on Store facet normals to avoid calculations on
the flythe fly
• Sign check of dot product with viewing vector

• Require positions of polygon and view as well as
facet normal

NVP •−)(

Storage requirementsStorage requirements

struct {
float x,y,z;

} Vector;

struct {
Vector position; // position on polygon - 12 bytes
Vector normal; // normal of polygon - 12 bytes
WORD p1, p2, p3; //indices to vertex pool – 6 bytes
WORD stub; // needed to avoid 2 byte alignment

// stalls and filling a cache line.
} faceData; // total size 32 bytes

Phase 1: Object space cullingPhase 1: Object space culling

Front end culling is fasterFront end culling is faster
• 10-20% frame rate boost on many apps

• Eliminate polygons BEFORE transform

Transform viewer into object spaceTransform viewer into object space
• Facet normal is precalculated

• Position of normal is one of the vertices

Rewrite culling testRewrite culling test

Culling test can be rewritten:Culling test can be rewritten:

N)(V - N)(P ••

NVP •−)(
Precalculate!!!
Don’t need P

Compact RepresentationCompact Representation

Store normal in fixed pointStore normal in fixed point
• Normal is “normalized” between -1 and +1.

• Represent normal in range from -32767 to +32768

• Only 2-byte representation instead of 4

Compact Storage RequirementsCompact Storage Requirements

structstruct {{

floatfloat pnpn; // precalculated position*normal; // precalculated position*normal

// 4 bytes// 4 bytes

signed short normal[3]; // normal of polygonsigned short normal[3]; // normal of polygon

// 6 bytes// 6 bytes

WORD p1, p2, p3; // indices to vertex poolWORD p1, p2, p3; // indices to vertex pool

// 6 bytes// 6 bytes

}} faceDatafaceData; //; // total size 16 bytestotal size 16 bytes

Only half the storage requirements!

Modified AlgorithmModified Algorithm

for (each face in the array){

// Expand the normal back to float from its fixed-point

// Calculate face->tn – (face->normal * Vo)

// Previously we calculated (P-V)*N, but we have tn = P*N

// (precalculated) we now need to calculate (tn – V*N)

if (result <= 0){ // polygon is front-facing

// face->p1, face->p2 and face->p3 are indices to the

// vertex pool. Use them to mark the appropriate

// vertices "visible"

}

}

Performance AdvantagesPerformance Advantages

FrontFront--end cullingend culling
Sequential memory accessesSequential memory accesses

• Data structures can be prefetched

Data structure for culling is half the sizeData structure for culling is half the size
Sample code available on Internet at Sample code available on Internet at

Gamasutra websiteGamasutra website ((gamasutragamasutra.com.com))

Performance ResultsPerformance Results

Ratios ofRatios of
• A = compact scalar/non-

compact scalar

• B = compact SIMD/non-
compact SIMD

• C = compact
SIMD+prefetch/non-
compact SIMD 2.72.72.72.72.32.3CC

1.71.71.61.61.451.45BB

1.21.21.21.21.151.15AA

20K20K6.4K6.4K400400# # tristris

Spherical ObjectSpherical Object

Bezier Surface TessellationBezier Surface Tessellation

Growing importance because of InternetGrowing importance because of Internet
We’ll concentrate on 4x4 patchesWe’ll concentrate on 4x4 patches
Fits 4Fits 4--wide SIMD computationwide SIMD computation

∑∑
= =

=
3

0

3

0
,,,)()(),(

i j
mjniji tBsBtsS P

Bezier patch: 4x4 gridBezier patch: 4x4 grid

u=0, v=0

u=1, v=0u=0, v=1

Preserve G1 ContinuityPreserve G1 Continuity

Collinear control points
along common edge

Pipeline configurationsPipeline configurations

Transform control points

Tessellation

Per vertex lighting

Rasterization

SW T&L HW T&L

Transform vertices

Tessellation

Per vertex lighting

Rasterization

A little math…A little math…

∑∑
= =

=
3

0

3

0
,,,)()(),(

i j
mjniji tBsBtsS P

∑∑ ∑∑
= = = =

′×′=

∂
∂×

∂
∂=

n

i

m

j

n

i

m

j
mjnijimjniji

Normal

tBsBtBsB

t
tsS

s
tsStsS

0 0 0 0
,,,,,,)()()()(

),(),(),(

PP

Surface

Normals

And the basis functions…And the basis functions…

3
3,3

2
3,2

2
3,1

3
3,0

)(

)1(3)(

)1(3)(

)1()(

uuB

uuuB

uuuB

uuB

=

−=

−=

−=

2
3,3

2
3,2

2
3,1

2
3,0

3)(

3)1(6)(

)1(6)1(3)(

)1(3)(

uuB

uuuuB

uuuuB

uuB

=′

−−=′

−−−=′

−−=′

Tessellation: 3 basic stepsTessellation: 3 basic steps

1. Take samples of the parametric surface
• We use uniform sampling
• These techniques work for any method

2. Connect samples into triangles
• Generate indices list

3. Generate tessellated surface vertices
• Generate vertex structures
• Generate in screen space – save transform work!

– Valid for Rational Bezier surfaces

Data Structures & ClassesData Structures & Classes

CBezierTessellation CBezierTessellation ClassClass
• Holds indices data for current tessellation level

• Holds precalculated values for B and B’

CBezierSurface CBezierSurface & & CBezierPatch CBezierPatch ClassesClasses
• Connects patches to form complex surfaces

SIMD implementationSIMD implementation

Evaluate surface position & normal for four Evaluate surface position & normal for four
sample points simultaneouslysample points simultaneously

For improved cache locality, useFor improved cache locality, use

),(),(),(),(
),(),(),(),(

),(),(),(),(
),(),(),(),(

33,323,313,303,3

33,223,213,203,2

33,123,113,103,1

33,023,013,003,0

sBsBsBsB
sBsBsBsB

sBsBsBsB
sBsBsBsB

Process 4 at a time!

SIMD implementation (cont.)SIMD implementation (cont.)

Use 32 FP numbers (four cache lines)Use 32 FP numbers (four cache lines)
• 4 s values x 4 basis + 4 t values x 4 basis

• Use prefetch to ensure no cache misses

Control points are expanded four timesControl points are expanded four times
• Generates four vertices in parallel

Position calculationPosition calculation

Convert to rational Bezier surfacesConvert to rational Bezier surfaces
• Persistent in projective transformations

∑∑

∑∑

= =

= == n

i

m

j
mjniji

n

i

m

j
mjniji

tBsBW

tBsBP
tsS

0 0
,,,

0 0
,,,

)()(

)()(
),(

Code details…Code details…

Sources available in supplemental notes & Sources available in supplemental notes &
Gamasutra website (Gamasutra website (gamasutragamasutra.com.com))

Fully coded in C++ using SIMD classesFully coded in C++ using SIMD classes

Performance resultsPerformance results

Bezier teapot objectBezier teapot object
• 306 control points

• 32 patches

Tessellate positionTessellate position
One directional lightOne directional light
PentiumPentium®® III processor @ III processor @
500 MHz500 MHz

0
2
4
6
8

10
12
14
16

Mclks

64 1600 33856

of triangles

Legacy SIMD

LUNCHLUNCH

Power Programming
with Streaming SIMD Extensions 2
Labs

Power Programming
with Streaming SIMD Extensions 2
Labs

Alex.Klimovitski@Alex.Klimovitski@intelintel.com.com
Tools & Technologies EuropeTools & Technologies Europe

Now We Will:Now We Will:

•• Explore the usage modes for the Streaming Explore the usage modes for the Streaming
SIMD Extensions 2 (SSE2)SIMD Extensions 2 (SSE2)

•• JumpJump--start using SSE / SSE2start using SSE / SSE2
•• Port from x87 to SSE FPPort from x87 to SSE FP
•• Enhance SSE FP code with SSE2 IntegerEnhance SSE FP code with SSE2 Integer
•• Use SSE/SSE2 Use SSE/SSE2 IntrinsicsIntrinsics and Vector Classesand Vector Classes

Our AgendaOur Agenda

Port x87Port x87--intensive code to SSE FPintensive code to SSE FP
Prepare data for SSE with SSEPrepare data for SSE with SSE
[De]Compress data with SSE2[De]Compress data with SSE2
SummarySummary

*Other brands and names are the property of their respective own*Other brands and names are the property of their respective owners. ers.

Our ToolsOur Tools

Microsoft* Visual C++* 6.0Microsoft* Visual C++* 6.0
Intel CompilerIntel Compiler

Lab Directory StructureLab Directory Structure
C:\

TriCull
Solution

ConCmn

Sine
Solution

SSE2Labs

Common FrameworkCommon Framework

Projects,Projects,
Assignments,Assignments,
SolutionsSolutions

Our Framework

Test1()

Xxx.cXxx.c

PrepTest1()

Test2()

PrepTest2()

ConCmn.cConCmn.c

main()

Our Framework, Main File
ConCmnConCmn\\ConCmn.cConCmn.c

// Test1
PrepTest1(); // allocate & initialize memory
ReadTscSync(&cA);
for (i = 0; i < g_nTestCount; i++)

Test1(); // do the test
ReadTscSync(&cB);
c1 = cB - cA;

// similar for Test2
PrepTest2(); // allocate & initialize memory
ReadTscSync(&cA);
for (i = 0; i < g_nTestCount; i++)

Test2(); // do the test
ReadTscSync(&cB);
c2 = cB - cA;

Finalize(); // check the results, free memory

// compare the time for Test2 vs. Test1
print((c2 - cO) / (c1 - cO) * 100.0);

Facet Normal-Based Triangle
Culling
Facet Normal-Based Triangle
Culling Facet Normal:Facet Normal:

N = (A N = (A -- C) C) ×××××××× (B (B -- C)C)
View Vector:View Vector:

V = C V = C -- EE
Cull Test:Cull Test:

t = V • Nt = V • N
if t <= 0 then PASSEDif t <= 0 then PASSED

Modified Cull Test:Modified Cull Test:
t = (C t = (C -- E) • NE) • N
t = C • N t = C • N -- E • NE • N

AA

CC

BB

EE
VV

NN

Do we need CDo we need C

for every
 tri?!

for every
 tri?!

Needed per triangle:
C • N -- scalar
N -- vector (3 coord)

Our AgendaOur Agenda

Port x87Port x87--intensive code to SSE FPintensive code to SSE FP
Prepare data for SSE with SSEPrepare data for SSE with SSE
[De]Compress data with SSE2[De]Compress data with SSE2
SummarySummary

What Is SIMD? – Single
Instruction, Multiple Data
What Is SIMD? – Single
Instruction, Multiple Data

++

Scalar processingScalar processing
• traditional mode

• one operation produces
one result

SIMD processingSIMD processing
• with SSE / SSE2

• one operation produces

multiple results

XX

YY

X + YX + Y

++
x3x3 x2x2 x1x1 x0x0

y3y3 y2y2 y1y1 y0y0

x3+y3x3+y3 x2+y2x2+y2 x1+y1x1+y1 x0+y0x0+y0

XX

YY

X + YX + Y

SSE / SSE2 SIMD Data TypesSSE / SSE2 SIMD Data Types

16x bytes16x bytes

8x words8x words

4x 4x dwordsdwords

2x 2x qwordsqwords

1x 1x dqworddqword

4x floats4x floats

2x doubles2x doubles

Anything that fits into 16 byte!Anything that fits into 16 byte!

Let’s Get Started!Let’s Get Started!

Open Open TriCullTriCull\\TriCull.dswTriCull.dsw , file , file TriCull.TriCull.cppcpp

Consider data declaration & initializationConsider data declaration & initialization
Test1()Test1() uses x87 uses x87 prepfninfoprepfninfo()(), , triculltricull()()

functions and functions and FNINFOFNINFO structurestructure
Test2()Test2() uses uses prepfninfoprepfninfo__psps_A()_A() and and
triculltricull_ps()_ps() functions, functions, FNINFO_PSFNINFO_PS structstruct

��

cncn nznz nyny nxnx......
fninfofninfo[1][1]

cncn nznz nyny nxnx

fninfofninfo[0][0]

Our task: Implement SSE version tricull_ps()!

Step 1: Defining Data Structure
for SSE Culling
Step 1: Defining Data Structure
for SSE Culling

We’ll be processing four triangles in parallelWe’ll be processing four triangles in parallel
Define appropriateDefine appropriate structstruct FNINFO_PSFNINFO_PS

bb,,cc In In prepfninfoprepfninfo__psps_A()_A(), initialize, initialize fninfofninfo__psps
fromfrom triinfotriinfo
• Hint: Use i >> 2 to index the structure,

i & 0x3 to index the element

nx3nx3 nx2nx2 nx1nx1 nx0nx0ny3ny3 ny2ny2 ny1ny1 ny0ny0nz3nz3 nz2nz2 nz1nz1 nz0nz0cn3cn3 cn2cn2 cn1cn1 cn0cn0

fninfofninfo__psps[0][0]

001616323248486464

cache line 0cache line 0

��

Four elements – but just one memory stream!

SSE / SSE2 IntrinsicsSSE / SSE2 Intrinsics

SSE/SSE2 data types as C data typesSSE/SSE2 data types as C data types
__m128__m128 four four floatfloatss

__m128d__m128d two two doubledoubless

__m128i__m128i any any intintss
in 16 bytesin 16 bytes

c =c = _mm_mm__addadd__psps(a, b);(a, b);
standardstandard
prefixprefix operationoperation operand typeoperand type

suffixsuffix

__psps

_pd_pd

_epi8_epi8……epi64epi64
_si128_si128

�� SSE/SSE2 instructions SSE/SSE2 instructions asas C functionsC functions

Step 2: Implementing Culling
Test with SSE
Step 2: Implementing Culling
Test with SSE

Follow comments starting with Follow comments starting with // ***// ***

a, b. Prepare SSE eyea, b. Prepare SSE eye--vector coordinatesvector coordinates
c. Define the loop limit and incrementc. Define the loop limit and increment

• Hint: we are looping thru four-packed normals

d. Load fourd. Load four--packed normal componentspacked normal components
e. Calculate foure. Calculate four--packed dot product of thepacked dot product of the normalsnormals and the and the

eye vectoreye vector
f. Perform the test, convert results to f. Perform the test, convert results to BOOLBOOLss
g. Write out the resultsg. Write out the results
h. Try streaming results outh. Try streaming results out

��

Build (F7),
run (Ctrl+F5),

enjoy!

Performing Test with SSEPerforming Test with SSE

WeWe’’re getting SSE masks (all 1s or 0s)re getting SSE masks (all 1s or 0s)
The test should generateThe test should generate BOOLBOOLss. How?. How?

cn3cn3 cn2cn2 cn1cn1 cn0cn0

E E •• N3N3 E E •• N2N2 E E •• N1N1 E E •• N0N0

11111111111111 00000000000000 11111111111111 00000000000000

00000010000001 00000010000001 00000010000001 00000010000001

00000010000001 0000000 00000010000001 0000000

C C •• NN

E E •• NN

mask_1mask_1

resultresult

<=<=

&&

_mm__mm_cmplecmple__psps

_mm_and__mm_and_psps

Defining SSE Bit MasksDefining SSE Bit Masks

No valid No valid floatfloat with bit pattern needed?with bit pattern needed?
Define aligned static array of four integersDefine aligned static array of four integers
Load it at runtime as packed Load it at runtime as packed floatfloatss
Implemented as a macro Implemented as a macro CONST_INT32_PSCONST_INT32_PS

Use the full power of C/C++ preprocessor!

#define CONST_INT32_PS(N, V3,V2,V1,V0) \
static const _MM_ALIGN16 int _##N[]= \

{V0, V1, V2, V3};/*little endian!*/ \
const F32vec4 N = _mm_load_ps((float*)_##N);

// usage example, mask for elements 3 and 1:
CONST_INT32_PS(mask31, ~0, 0, ~0, 0);

Our Takeaway from Porting to SSEOur Takeaway from Porting to SSE

SSE/SSE2 boost performance of FP codeSSE/SSE2 boost performance of FP code
Use SSE/SSE2Use SSE/SSE2--friendly data structurefriendly data structure
SSE/SSE2SSE/SSE2 Intrinsics Intrinsics produce efficient code produce efficient code

without assemblerwithout assembler
SSE/SSE2 compare & logic operations replace SSE/SSE2 compare & logic operations replace

branchesbranches

Our AgendaOur Agenda

Port x87Port x87--intensive code to SSE FPintensive code to SSE FP
Prepare data for SSE with SSEPrepare data for SSE with SSE
[De]Compress data with SSE2[De]Compress data with SSE2
SummarySummary

SSE/SSE2 Vector ClassesSSE/SSE2 Vector Classes

C++ wrap for a C++ wrap for a __m128__m128x data types and x data types and
corresponding corresponding intrinsicsintrinsics

__m128 a, b, c;
a=_mm_mul_ps(_mm_add_ps(a,b),c);

F32vec4 a, b, c;
a = (a + b) * c;

IntrinsicsIntrinsics Vector ClassesVector Classes

__m128__m128 four four floatfloatss

__m128d__m128d two two doubledoubless

__m128i__m128i any any intintss
in 16 bytesin 16 bytes

F32vec4F32vec4

F64vec2F64vec2

I8vec16I8vec16……
I64vec2I64vec2

Scalar Data Preparation ProblemScalar Data Preparation Problem

Move Move prepfninfoprepfninfo()() function into function into Test1()Test1() and and
prepfninfoprepfninfo__psps()() into into Test2()Test2(), compare , compare
performanceperformance

Problem 1: Scalar filling of Problem 1: Scalar filling of FNINFO_PSFNINFO_PS structures is structures is
slowslow

Problem 2: Memory stalls possibleProblem 2: Memory stalls possible

��

nx3nx3

nx3nx3

nx2nx2

nx2nx2

nx1nx1

nx1nx1

nx0nx0

nx0nx0

memory

scalar data
operands

scalar store

nxnx

packed load
SSE operand

memory stall!

Step 3: Preparing SSE Data with SSEStep 3: Preparing SSE Data with SSE
a. Implement a. Implement vectsubvectsub()(), , dotproductdotproduct()(), ,
crossproductcrossproduct()() using using F32vec4F32vec4 Vector ClassVector Class

b. Assume we have b. Assume we have TRIINFOtoF32vec4()TRIINFOtoF32vec4(). .
Implement Implement prepfninfoprepfninfo__psps()() using using F32vec4F32vec4

c. In c. In PrepTest2()PrepTest2(), use , use prepfninfoprepfninfo__psps_B()_B()
instead of instead of prepfninfoprepfninfo__psps_A()_A()

x87 code is easy to port with C++ Vector Classes!

��

Now what about TRIINFOtoF32vec4() ?

Data Swizzling ProblemData Swizzling Problem
•• The way we have it: array of structuresThe way we have it: array of structures

czcz
00

cycy
00

cxcx
00

bzbz
00

byby
00

bxbx
00

azaz
00

ayay
00

axax
00

czcz
11

cycy
11

cxcx
11

bzbz
11

byby
11

bxbx
11

azaz
11

ayay
11

axax
11

czcz
22

cycy
22

cxcx
22

bzbz
22

byby
22

bxbx
22

azaz
22

ayay
22

axax
22

czcz
33

cycy
33

cxcx
33

bzbz
33

byby
33

bxbx
33

azaz
33

ayay
33

axax
33

triinfotriinfo[0][0]triinfotriinfo[1][1]triinfotriinfo[2][2]triinfotriinfo[3][3]

axax
33

axax
22

axax
11

axax
00

ayay
33

ayay
22

ayay
11

ayay
00

azaz
00

azaz
33

azaz
22

azaz
11

bxbx
33

bxbx
22

bxbx
11

bxbx
00

byby
11

byby
00

byby
33

byby
22

bzbz
33

bzbz
22

bzbz
11

bzbz
00

cxcx
22

cxcx
11

cxcx
00

cxcx
33

cycy
33

cycy
22

cycy
11

cycy
00

czcz
33

czcz
22

czcz
11

czcz
00

axaxayayazazbxbxbybybzbzcxcxcycyczcz

�� The way we need it: structure of arraysThe way we need it: structure of arrays

SSE helps implement optimal
data swizzling!

�� Task for Task for TRIINFOtoF32vec4()TRIINFOtoF32vec4(): restructure : restructure
(“swizzle”) the data in minimal number of (“swizzle”) the data in minimal number of
operations and preventing memory stallsoperations and preventing memory stalls

Solving Data Swizzling Problem
with SSE
Solving Data Swizzling Problem
with SSE
Treat four Treat four triinfotriinfos s as nine SSE operandsas nine SSE operands
Combine and reshuffle matching elementsCombine and reshuffle matching elements

czcz
00

cycy
00

cxcx
00

bzbz
00

byby
00

bxbx
00

azaz
00

ayay
00

axax
00

czcz
11

cycy
11

cxcx
11

bzbz
11

byby
11

bxbx
11

azaz
11

ayay
11

axax
11

czcz
22

cycy
22

cxcx
22

bzbz
22

byby
22

bxbx
22

azaz
22

ayay
22

axax
22

czcz
33

cycy
33

cxcx
33

bzbz
33

byby
33

bxbx
33

azaz
33

ayay
33

axax
33

bxbx
00

azaz
00

ayay
00

axax
00

cycy
00

cxcx
00

bzbz
00

byby
00

czcz
00

azaz
11

ayay
11

axax
11

cxcx
11

bzbz
11

byby
11

bxbx
11

czcz
11

cycy
11

ayay
22

axax
22

bzbz
22

byby
22

bxbx
22

azaz
22

czcz
22

cycy
22

cxcx
22

axax
33

byby
33

bxbx
33

azaz
33

ayay
33

czcz
33

cycy
33

cxcx
33

bzbz
33

v0v0v1v1v2v2v3v3v4v4v5v5v6v6v7v7v8v8

bxbx
00

azaz
00

ayay
00

axax
00

czcz
00

azaz
11

ayay
11

axax
11

czcz
11

cycy
11

ayay
22

axax
22

czcz
22

cycy
22

cxcx
22

axax
33

v0v0

v2v2

v4v4

v6v6

bxbx
00

azaz
00

ayay
00

axax
00

czcz
00

azaz
11

ayay
11

axax
11

czcz
11

cycy
11

ayay
22

axax
22

byby
33

bxbx
33

azaz
33

ayay
33

v0v0

v2v2

v4v4

v7v7

bxbx
00

azaz
00

ayay
00

axax
00

czcz
00

azaz
11

ayay
11

axax
11

bzbz
22

byby
22

bxbx
22

azaz
22

byby
33

bxbx
33

azaz
33

ayay
33

v0v0

v2v2

v5v5

v7v7

bxbx
00

azaz
00

ayay
00

axax
00

cxcx
11

bzbz
11

byby
11

bxbx
11

bzbz
22

byby
22

bxbx
22

azaz
22

byby
33

bxbx
33

azaz
33

ayay
33

v0v0

v3v3

v5v5

v7v7

cycy
00

cxcx
00

bzbz
00

byby
00

cxcx
11

bzbz
11

byby
11

bxbx
11

bzbz
22

byby
22

bxbx
22

azaz
22

byby
33

bxbx
33

azaz
33

ayay
33

v1v1

v3v3

v5v5

v7v7

cycy
00

cxcx
00

bzbz
00

byby
00

cxcx
11

bzbz
11

byby
11

bxbx
11

bzbz
22

byby
22

bxbx
22

azaz
22

czcz
33

cycy
33

cxcx
33

bzbz
33

v1v1

v3v3

v5v5

v8v8

……

triinfotriinfo[0][0]triinfotriinfo[1][1]triinfotriinfo[2][2]triinfotriinfo[3][3]

bx0bx0 az0az0 ay0ay0 ax0ax0000000 000000 000000 111111

bx0bx0 az0az0 ay0ay0 ax0ax0111111 000000 000000 000000

bx0bx0 az0az0 ay0ay0 ax0ax0000000 111111 000000 000000

bx0bx0 az0az0 ay0ay0 ax0ax0000000 000000 111111 000000
&&

&&

&&

&&

m1m1

m2m2

m3m3

m0m0

Combining and
Reshuffling
Combining and
Reshuffling
AND with masks AND with masks m0m0....m3m3
OR the resultsOR the results
Reshuffle to right orderReshuffle to right order

bx0bx0 az0az0 ay0ay0 ax0ax0bx0bx0 az0az0 ay0ay0 ax0ax0

bx0bx0 az0az0 ay0ay0 ax0ax0az1az1 ay1ay1 ax1ax1 cz0cz0

bx0bx0 az0az0 ay0ay0 ax0ax0ay2ay2 ax2ax2 cz1cz1 cy1cy1

bx0bx0 az0az0 ay0ay0 ax0ax0by3by3 bx3bx3 az3az3 ay3ay3

bx0bx0 az0az0 ay0ay0 ax0ax0ay2ay2 ay1ay1 ay0ay0 ay3ay3

||

||

||

bx0bx0 az0az0 ay0ay0 ax0ax0ay3ay3 ay2ay2 ay1ay1 ay0ay0

RESHUFFLE(0,3,2,1)RESHUFFLE(0,3,2,1)

ay = v[0] & m1 | v[2] & m2
| v[4] & m3 | v[7] & m0;

RESHUFFLE(ay, 0,3,2,1);

Compact notation using
Vector Classes!

Step 4: Implementing Data
Swizzling with SSE
Step 4: Implementing Data
Swizzling with SSE

•• Work on function Work on function TRIINFOtoF32vec4()TRIINFOtoF32vec4()

a. Define masks a. Define masks m0m0....m3m3 using using CONST_INT32_PSCONST_INT32_PS macromacro
b. Cast array of b. Cast array of TRIINFOSTRIINFOSss to array of to array of F32vec4F32vec4ss
c. Mask out and combine matching elementsc. Mask out and combine matching elements
d. Reshuffle the results to the right order (where needed)d. Reshuffle the results to the right order (where needed)
•• Build, run, compare performanceBuild, run, compare performance
•• Try defining Try defining INT32_PSINT32_PS constants as staticconstants as static

Our Takeaway from Preparing
Data with SSE
Our Takeaway from Preparing
Data with SSE

•• Use SSE/SSE2Use SSE/SSE2--friendly data structurefriendly data structure
•• To modify data structure onTo modify data structure on--thethe--fly, use fly, use

SSE/SSE2SSE/SSE2
•• SSE/SSE2 Vector Classes are ideal to code SSE/SSE2 Vector Classes are ideal to code

arithmetical and logical operationarithmetical and logical operation

Our AgendaOur Agenda

Port x87Port x87--intensive code to SSE FPintensive code to SSE FP
Prepare data for SSE with SSEPrepare data for SSE with SSE
[De]Compress data with SSE2[De]Compress data with SSE2
SummarySummary

Solving Data Amount ProblemSolving Data Amount Problem

How to reduce memory consumed by the facet normal How to reduce memory consumed by the facet normal
components?components?

Special property of normal components:Special property of normal components:
abs(abs(nxnx,, nyny,, nznz) <= 1.0) <= 1.0

They can be easily mapped to They can be easily mapped to shortshort range!range!

__inline short float2short(float f) // scale & compact
{

return (short)round(f * SHRT_MAX);
}

This saves 50% of storage space!
But how will we get our floats back?

With SSE2, of course!

cache line 4cache line 4 cache line 3cache line 3

0 33 22 11 00 33 22 11 00
48485656

Changing the Data Structure to
Use shorts
Changing the Data Structure to
Use shorts
Departure from 16n Departure from 16n struct struct size can cause misalignment and size can cause misalignment and

cache line splitscache line splits

cn3cn3 cn2cn2 cn1cn1 cn0cn0 33 22 11 00 33 22 11 00 33 22 11 00
00881616242432324040 nxnxnynynznz

fninfofninfo__psps[0][0]fninfofninfo__psps[1][1]

cn3cn3 cn2cn2 cn1cn1 cn0cn0 33 22 11 00 33 22 11 00 33 22 11 00
160160168168176176184184192192 nxnxnynynznz

fninfofninfo__psps[4][4]
Misalignment!Misalignment!

Cache line split!Cache line split!

......
200200

��Step 5: Data Structure for Facet
Normals, Padded
Step 5: Data Structure for Facet
Normals, Padded

cn3cn3 cn2cn2 cn1cn1 cn0cn0

0088161624243232

33 22 11 00
nxnx

33 22 11 00
nyny

33 22 11 00
nznz

00 33 22 11 00
48485656

33 22 11 00
padpad

fninfofninfo__psps[0][0][1][1]

Restoring structure size to 16n

Follow comments starting with Follow comments starting with // ###// ###

�� Implement new version of Implement new version of FNINFO_PSFNINFO_PS to to
use packed use packed shortshortss

�� To avoid misalignmentTo avoid misalignmentss and cache line and cache line
splits, add paddingsplits, add padding

SSE2 Integer 128-bit Types and
Intrinsics
SSE2 Integer 128-bit Types and
Intrinsics

QWORD QWORD QWORDQWORD

DWORDDWORD DWORD DWORD DWORDDWORD DWORDDWORD

DQWORDDQWORD _mm_xxx__mm_xxx_si128si128

_mm_xxx__mm_xxx_epi64epi64

_mm_xxx__mm_xxx_epi32epi32

�� All types are architecturally equivalent and All types are architecturally equivalent and
freely interchangeablefreely interchangeable

�� One intrinsic data type One intrinsic data type __m128i__m128i

�� Operation type defined by Operation type defined by intrinsic’sintrinsic’s suffixsuffix

WW WW WW WW WW WW WW WW _mm_xxx__mm_xxx_epi16epi16

BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB _mm_xxx__mm_xxx_epi8epi8All integer types from DQWORD to BYTE

��Step 6: Converting Packed
floats to Packed shorts
Step 6: Converting Packed
floats to Packed shorts

InventoryInventory
• There is a conversion 4 32-bit floats � 4 ints

•__m128i data type holds 8 shorts

Action PlanAction Plan
1.convert packed floats (nx,ny,nz) to

packed ints (inx,iny,inz)

2.pack 4+4 ints (inx,iny) into 8 shorts and store

3.pack inz with itself and store low 4 shorts

Implement in Implement in prepfninfoprepfninfo__psps_B()_B()

Intrinsics are more flexible than Vector
Classes when dealing with multiple

SSE/SSE2 data types

Restoring Packed floats from
Packed shorts, Plan
Restoring Packed floats from
Packed shorts, Plan

InventoryInventory
• __m128i data type holds 8 shorts

• There is a conversion 4 32-bit ints ���� 4 floats

Action PlanAction Plan
1.load 8 shorts (nx, ny)

2.unpack (sign-extend) lower 4 shorts to 4 ints

3.convert to 4 floats (nx)

4.unpack higher 4 shorts to 4 ints

5.convert to 4 floats (ny)

6.load last 4 shorts (nz) -- _mm_loadl_epi64()

7.unpack to 4 ints, convert to 4 floats (nz)

Restoring Packed floats from
Packed shorts
Restoring Packed floats from
Packed shorts

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

> ?

11111111 00000000 11111111 11111111 00000000 11111111 00000000 11111111

y3y3 y2y2 y1y1 y0y0 x3x3 x2x2 x1x1 x0x0

x3x3 x2x2 x1x1 x0x0

float(x3)float(x3) float(x2)float(x2) float(x1)float(x1) float(x0)float(x0)

_mm__mm_cmpgtcmpgt_epi16()_epi16()

_mm__mm_unpacklounpacklo_epi16()_epi16()

_mm_cvtepi32__mm_cvtepi32_psps()()

((_mm__mm_unpackhiunpackhi_epi16()_epi16()))

float(y3)float(y3) float(y2)float(y2) float(y1)float(y1) float(y0)float(y0)

Converting to 8 packed floats at once!

RescalingRescaling

Now that we have our Now that we have our floatfloats back…s back…
Should we rescale every Should we rescale every nxnx, , nyny, , nznz by by
1.0f/SHRT_MAX1.0f/SHRT_MAX ??

SuggestSuggest a better solution thata better solution that
• takes care of rescaling

• doesn’t require multiplication for every normal

• Hint: Look at the cull test algorithm, the dot
product formula

��
Step 7: Restoring Packed floatsStep 7: Restoring Packed floats

Follow comments starting with Follow comments starting with // ###// ###

a. Define a zero a. Define a zero __m128i__m128i constantconstant
b. Define a rescaling const, b. Define a rescaling const, 1.0f/SHRT_MAX1.0f/SHRT_MAX

c. Rescale eye vector componentsc. Rescale eye vector components
d. Declare d. Declare __m128i__m128i variablesvariables
e. Load 8+4 packed e. Load 8+4 packed shortshort componentscomponents
f. Unpack to f. Unpack to intints s with signwith sign--extensionextension
g. Convert to g. Convert to floatfloatss
Build (F7) and run (Ctrl+F5)Build (F7) and run (Ctrl+F5)

Our Takeaway from
[De]Compressing Data
Our Takeaway from
[De]Compressing Data

•• For ultimate performance, look for a way For ultimate performance, look for a way
to compress your datato compress your data

•• For onFor on--thethe--fly [de]compression, use SSE2fly [de]compression, use SSE2
•• For rapid port and development, use For rapid port and development, use

Vector ClassesVector Classes
•• For data manipulation and conversion, use For data manipulation and conversion, use

SSE/SSE2SSE/SSE2 IntrinsicsIntrinsics

Our AgendaOur Agenda

Port x87Port x87--intensive code to SSE FPintensive code to SSE FP
Prepare data for SSE with SSEPrepare data for SSE with SSE
[De]Compress data with SSE2[De]Compress data with SSE2
SummarySummary

What If…What If…

What if we were to save triangle usage flags as:What if we were to save triangle usage flags as:
•shorts?

•BYTEs?

• bits?

How could we keep count of triangles that passed How could we keep count of triangles that passed
the test?the test?

Propose a data structure for compressed facet Propose a data structure for compressed facet
normalsnormals and C and C •• N that doesnN that doesn’’t need paddingt need padding

Mask Hashing: MovemaskMask Hashing: Movemask

F32vec4 mask = cmplt(a, b);
int bithash = move_mask(mask);
// bithash = 0..15
switch (bithash) {

case 0: // handle f-f-f-f
case 1: // handle f-f-f-t
.... // handle other cases
case 15: // handle t-t-t-t

}

0.00.0 0.00.0 --3.03.0 3.03.0

0.00.0 1.01.0 --5.05.0 5.05.0
cmpltcmplt

0000000000 1111111111 0000000000 1111111111

A

B

movemaskmovemask
000000 00 11 00 11

Test Passed CountingTest Passed Counting
0000000000 1111111111 0000000000 1111111111

movemaskmovemask
000000 00 11 00 11

static const int bitcount[16] = {
0, // 0 == 0000
1, // 1 == 0001
1, // 2 == 0010
2, // 3 == 0011
....
4 // 15 == 1111

};
F32vec4 mask = cmplt(a, b);
npassed = bitcount[move_mask(mask)];

Our SummaryOur Summary

•• Get performance boost with SSE / SSE2 !Get performance boost with SSE / SSE2 !
•• Port x87 and MMXPort x87 and MMX™™ code to SSE / SSE2 !code to SSE / SSE2 !
•• For FP code, use SSE / SSE2 FP (both single and double For FP code, use SSE / SSE2 FP (both single and double

precisions available!)precisions available!)
•• For integer code, use SSE2 IntegerFor integer code, use SSE2 Integer
•• For rapid port, use Vector Classes, for data manipulation For rapid port, use Vector Classes, for data manipulation

and conversion, use and conversion, use IntrinsicsIntrinsics
•• Employ fast data [de]compression withEmploy fast data [de]compression with

SSE / SSE2!SSE / SSE2!
•• Let IntelLet Intel®® Compiler assist you!Compiler assist you!

SSE/SSE2 Toolbox
Solutions for
Real-Life SIMD Problems

SSE/SSE2 Toolbox
Solutions for
Real-Life SIMD Problems

AlexAlex..KlimovitskiKlimovitski@@intelintel.com.com
Tools & Technologies EuropeTools & Technologies Europe

Intel CorporationIntel Corporation

AgendaAgenda

Exploiting ParallelismExploiting Parallelism
Data RestructuringData Restructuring
Data CompressionData Compression
Conditional Code with SIMDConditional Code with SIMD
SummarySummary
Bonus FoilsBonus Foils

AgendaAgenda

Exploiting ParallelismExploiting Parallelism
Data RestructuringData Restructuring
Data CompressionData Compression
Conditional Code with SIMDConditional Code with SIMD
SummarySummary
Bonus FoilsBonus Foils

Introducing SIMD: Single
Instruction, Multiple Data
Introducing SIMD: Single
Instruction, Multiple Data

++

Scalar processingScalar processing
• traditional mode

• one operation produces
one result

SIMD processingSIMD processing
• with SSE / SSE2

• one operation produces

multiple results

XX

YY

X + YX + Y

++
x3x3 x2x2 x1x1 x0x0

y3y3 y2y2 y1y1 y0y0

x3+y3x3+y3 x2+y2x2+y2 x1+y1x1+y1 x0+y0x0+y0

XX

YY

X + YX + Y

SSE / SSE2 SIMD Data TypesSSE / SSE2 SIMD Data Types

16x bytes16x bytes

8x words8x words

4x 4x dwordsdwords

2x 2x qwordsqwords

1x 1x dqworddqword

4x floats4x floats

2x doubles2x doubles

Anything that fits into 16 byte!Anything that fits into 16 byte!

Matrix by Vector ExampleMatrix by Vector Example

For X, Y, Z, W:

*

* =

* =

* =

* =

+

M by V Code M by V Code
static float m[4][4];

for (int i = 0; i < ARRAY_COUNT; i++) {
float x = xi[i];
float y = yi[i];
float z = zi[i];
float w = wi[i];
xo[i] = x * m[0][0] + y * m[0][1] + z * m[0][2] +

w * m[0][3];
yo[i] = x * m[1][0] + y * m[1][1] + z * m[1][2] +

w * m[1][3];
zo[i] = x * m[2][0] + y * m[2][1] + z * m[2][2] +

w * m[2][3];
wo[i] = x * m[3][0] + y * m[3][1] + z * m[3][2] +

w * m[3][3];
}

M by V with SSE, 1st TryM by V with SSE, 1st Try

*

* =
+

+Element sumup
adds overhead

Element Element sumup sumup
adds overheadadds overhead

M by V with SSE, 2nd TryM by V with SSE, 2nd Try
*

* =

* =

* =

* =
+

Same Operation –
Just Four at A Time!
Same Operation –
Just Four at A Time!

For X, Y, Z, W:

*

* =

* =

* =

* =

+

Remember MemoryRemember Memory
AoSAoS: Array of Structures: Array of Structures

SoASoA: Structure of Arrays: Structure of Arrays

X Y Z W X Y Z W ... aosIn

X X X X ...

Y Y Y Y ...

Z Z Z Z ...

W W W W ...

soaIn.m_ax

soaIn.m_ay

soaIn.m_az

soaIn.m_aw

X X X X Y Y Y Y Z Z Z Z W W W W

X4Y4Z4W4

Hybrid StructureHybrid Structure

AoS defeats SIMDAoS AoS defeats SIMDdefeats SIMD

SoA provides for
maximum parallelism!

SoASoA provides forprovides for
maximum parallelism!maximum parallelism!

Hybrid is also more
memory-friendly!

Hybrid is also moreHybrid is also more
memorymemory--friendly!friendly!

Remember Alignment, too!Remember Alignment, too!
SSE/SSE2 loads/store expect data aligned on SSE/SSE2 loads/store expect data aligned on

1616--byte boundary; otherwise crash!byte boundary; otherwise crash!
There are unaligned load/store versions, but There are unaligned load/store versions, but

these are significantly slowerthese are significantly slower

X X X X ...

Y Y Y Y ...

Z Z Z Z ...

W W W W ...

X X X X Y Y Y Y Z Z Z Z W W W W

1616--byte aligned!byte aligned!

__declspec(align(16)) float a[N]; // static or auto
int* b = _mm_malloc(N * sizeof(int), 16); // dynamic
_mm_free(b);
F32vec4 c[N / 4]; // Vec Classes are always aligned

M by V Code with SSEM by V Code with SSE
static F32vec4 q[4][4];

for (int i = 0; i < ARRAY_COUNT; i += 4) {
F32vec4 x = (F32vec4&)xi[i];
F32vec4 y = (F32vec4&)yi[i];
F32vec4 z = (F32vec4&)zi[i];
F32vec4 w = (F32vec4&)wi[i];
(F32vec4&)xo[i] = x * q[0][0] + y * q[0][1] +

z * q[0][2] + w * q[0][3];
(F32vec4&)yo[i] = x * q[1][0] + y * q[1][1] +

z * q[1][2] + w * q[1][3];
(F32vec4&)zo[i] = x * q[2][0] + y * q[2][1] +

z * q[2][2] + w * q[2][3];
(F32vec4&)wo[i] = x * q[3][0] + y * q[3][1] +

z * q[3][2] + w * q[3][3];
}

Same Code as Scalar –
Just Four at A Time!
Same Code as Scalar –
Just Four at A Time!

static float m[4][4];

for (int i = 0; i < ARRAY_COUNT; i++) {
float x = xi[i];
float y = yi[i];
float z = zi[i];
float w = wi[i];
xo[i] = x * m[0][0] + y * m[0][1] + z * m[0][2] +

w * m[0][3];
yo[i] = x * m[1][0] + y * m[1][1] + z * m[1][2] +

w * m[1][3];
zo[i] = x * m[2][0] + y * m[2][1] + z * m[2][2] +

w * m[2][3];
wo[i] = x * m[3][0] + y * m[3][1] + z * m[3][2] +

w * m[3][3];
}

M by V with Perspective
Correction Code
M by V with Perspective
Correction Code

for (int i = 0; i < ARRAY_COUNT; i++) {
float x = xi[i];
float y = yi[i];
float z = zi[i];
float w = wi[i];

float wr = 1.0 / (x * m[3][0] + y * m[3][1] +
z * m[3][2] + w * m[3][3]);

xo[i] = wr * (x * m[0][0] + y * m[0][1] +
z * m[0][2] + w * m[0][3]);

yo[i] = wr * (x * m[1][0] + y * m[1][1] +
z * m[1][2] + w * m[1][3]);

zo[i] = wr * (x * m[2][0] + y * m[2][1] +
z * m[2][2] + w * m[2][3]);

wo[i] = wr;
}

M by V with Perspective
Correction SSE Code
M by V with Perspective
Correction SSE Code

for (int i = 0; i < ARRAY_COUNT; i += 4) {
F32vec4 x = (F32vec4&)xi[i];
F32vec4 y = (F32vec4&)yi[i];
F32vec4 z = (F32vec4&)zi[i];
F32vec4 w = (F32vec4&)wi[i];

F32vec4 wr = rcp_nr(x * q[3][0] + y * q[3][1] +
z * q[3][2] + w * q[3][3]);

(F32vec4&)xo[i] = wr * (x * q[0][0] + y * q[0][1]
+ z * q[0][2] + w * q[0][3]);

(F32vec4&)yo[i] = wr * (x * q[1][0] + y * q[1][1]
+ z * q[1][2] + w * q[1][3]);

(F32vec4&)zo[i] = wr * (x * q[2][0] + y * q[2][1]
+ z * q[2][2] + w * q[2][3]);

(F32vec4&)wo[i] = wr;
} Easy per-component processing!Easy perEasy per--component processing!component processing!

“SIMDizing” The Matrix “SIMDizing” The Matrix
void FourFloats2F32vec4(F32vec4* v, const float* f)
{
v[0]=_mm_load_ps(f);
v[1]=_mm_shuffle_ps(v[0],v[0],_MM_SHUFFLE(1,1,1,1));
v[2]=_mm_shuffle_ps(v[0],v[0],_MM_SHUFFLE(2,2,2,2));
v[3]=_mm_shuffle_ps(v[0],v[0],_MM_SHUFFLE(3,3,3,3));
v[0]=_mm_shuffle_ps(v[0],v[0],_MM_SHUFFLE(0,0,0,0));

}

static _MM_ALIGN16 float m[4][4];
static F32vec4 q[4][4];

for (int i = 0; i < 4; i++)
FourFloats2F32vec4(q[i], m[i]);

Align scalar data, too!Align scalar data, too!Align scalar data, too!

Rules of Good ParallelismRules of Good Parallelism

•• Maintain the original algorithmMaintain the original algorithm
•• Process {four} data portions in parallelProcess {four} data portions in parallel
•• Keep only homogeneous components in Keep only homogeneous components in

one SIMD operandone SIMD operand
•• {Quadruple} loop{Quadruple} loop--invariants outside the invariants outside the

loop to create SIMD invariantsloop to create SIMD invariants
•• Use SIMDUse SIMD--friendly structure, friendly structure, SoA SoA or Hybridor Hybrid

AgendaAgenda

Exploiting ParallelismExploiting Parallelism
Data RestructuringData Restructuring
Data CompressionData Compression
Conditional Code with SIMDConditional Code with SIMD
SummarySummary
Bonus FoilsBonus Foils

Data ConsumerData Consumer

Data ProviderData Provider

SIMD-Unfriendly Data StructuresSIMD-Unfriendly Data Structures

The primary SIMD problemThe primary SIMD problem
Results from:Results from:

• Interface / API Constraints

• Algorithm Logic

• Legacy Code

X Y Z W X Y Z W ...

Data ProcessingData ProcessingAoSAoS

AoSAoS

AoSAoS
X Y Z W X Y Z W ...

Data ConsumerData Consumer

Taming SIMD-Unfriendly DataTaming SIMD-Unfriendly Data

“Swizzle” (transform) data at run“Swizzle” (transform) data at run--timetime
PrePre--swizzle at design/loadswizzle at design/load--time as much as possibletime as much as possible
Implement swizzle with SSE / SSE2Implement swizzle with SSE / SSE2

Data ConsumerData Consumer

Data ProviderData Provider
X Y Z W X Y Z W ...

Data ProcessingData ProcessingAoSAoS

SoASoA

AoSAoS
X Y Z W X Y Z W ...

AoS AoS ----> > SoASoA

SoASoA ----> > AoSAoS

X X X X Y Y Y Y Z Z Z Z W W W W ...

SoASoA

X X X X Y Y Y Y Z Z Z Z W W W W ...

SoASoA

Data Swizzling Wrong WayData Swizzling Wrong Way

aosIn

XYZW

w3w3 z3z3 y3y3 x3x3 w2w2 z2z2 y2y2 x2x2 w1w1 z1z1 y1y1 x1x1 w0w0 z0z0 y0y0 x0x0

XYZWXYZWXYZW

x

y0y0 x0x0y1y1 x1x1y2y2 x2x2y3y3 x3x3

m
em

or
y

lo
ca

l v
ar

-s
(r

eg
is

te
rs

)

x0x0 tempx1x1x3x3

x1x1 x0x0x3x3 x2x2

load_ps

x2x2

y

z

w

memory stall

F32vec4 x, y, z, w;
float temp[4];
temp[0] = aosIn[0].x;
temp[1] = aosIn[1].x;
temp[2] = aosIn[2].x;
temp[3] = aosIn[3].x;
x = _mm_load_ps(temp);
// same for y, z, w

Do NOT use scalar ops to prepare SIMD-friendly data!Do NOT use scalar ops to prepare SIMDDo NOT use scalar ops to prepare SIMD--friendly data!friendly data!

Chief SIMD Swizzler: ShuffleChief SIMD Swizzler: Shuffle
First operand contributes two lower elements,First operand contributes two lower elements,

second operand contributes two higher onessecond operand contributes two higher ones

a3a3 a2a2 a1a1 a0a0b3b3 b2b2 b1b1 b0b0

b3..0b3..0 b3..0b3..0 a3..0a3..0 a3..0a3..0

_mm_shuffle__mm_shuffle_psps((aa,, bb, _MM_SHUFFLE(, _MM_SHUFFLE(33,,11,,22,,00))))

�� Shuffle with itself: total swizzleShuffle with itself: total swizzle

a3a3 a2a2 a1a1 a0a0

_mm_shuffle__mm_shuffle_psps((aa,, aa, _MM_SHUFFLE(, _MM_SHUFFLE(33,,11,,22,,00))))

a3..0a3..0 a3..0a3..0 a3..0a3..0 a3..0a3..0

Data Swizzling with SIMD: AoS to
SoA
Data Swizzling with SIMD: AoS to
SoA

aosIn

XYZW

w3w3 z3z3 y3y3 x3x3 w2w2 z2z2 y2y2 x2x2 w1w1 z1z1 y1y1 x1x1 w0w0 z0z0 y0y0 x0x0

XYZWXYZWXYZW

xy x3x3 x2x2 x1x1 x0x0

shuffle(2,0,2,0)

y3y3 y2y2 y1y1 y0y0

shuffle(3,1,3,1)

y0y0 x0x0

y0y0 x0x0

loadlo

y1y1 x1x1

y1y1 x1x1

loadlo

y2y2 x2x2

y2y2 x2x2

loadlo

y3y3 x3x3

y3y3 x3x3

loadlo

xy10xy32

Similar steps for z, w!Similar steps for z, w!Similar steps for z, w! m
em

or
y

lo
ca

l v
ar

-s
 (r

eg
is

te
rs

)

m
em

or
y

lo
ca

l v
ar

-s

Data Swizzling with SIMD: AoS to SoA
(continued)
Data Swizzling with SIMD: AoS to SoA
(continued)

aosIn

XYZW

w3w3 z3z3 y3y3 x3x3 w2w2 z2z2 y2y2 x2x2 w1w1 z1z1 y1y1 x1x1 w0w0 z0z0 y0y0 x0x0

XYZWXYZWXYZW

zw z3z3 z2z2 z1z1 z0z0

shuffle(2,0,2,0)

w3w3 w2w2 w1w1 w0w0

shuffle(3,1,3,1)

w0w0 z0z0

y0y0 x0x0

loadhi

w1w1 z1z1

y1y1 x1x1

loadhi
w2w2 z2z2

y2y2 x2x2

loadhi

w3w3 z3z3

y3y3 x3x3

loadhi

zw10zw32

To prepare SIMD-friendly data, use SIMD!To prepare SIMDTo prepare SIMD--friendly data, use SIMD!friendly data, use SIMD!

AoS to SoA CodeAoS to SoA Code
void XYZWtoF32vec4(F32vec4& x, y, z, w, XYZW* aosIn)
{
F32vec4 xy10, xy32, zw10, zw32;
xy10 = zw10 = _mm_setzero_ps();
xy10 = _mm_loadl_pi(xy10, (__m64*)&(aosIn[0]).x);
zw10 = _mm_loadl_pi(zw10, (__m64*)&(aosIn[0]).z);
xy10 = _mm_loadh_pi(xy10, (__m64*)&(aosIn[1]).x);
zw10 = _mm_loadh_pi(zw10, (__m64*)&(aosIn[1]).z);
xy32 = zw32 = _mm_setzero_ps();
xy32 = _mm_loadl_pi(xy32, (__m64*)&(aosIn[2]).x);
zw32 = _mm_loadl_pi(zw32, (__m64*)&(aosIn[2]).z);
xy32 = _mm_loadh_pi(xy32, (__m64*)&(aosIn[3]).x);
zw32 = _mm_loadh_pi(zw32, (__m64*)&(aosIn[3]).z);
x = _mm_shuffle_ps(xy10, xy32, SHUFFLE(2,0,2,0));
y = _mm_shuffle_ps(xy10, xy32, SHUFFLE(3,1,3,1));
z = _mm_shuffle_ps(zw10, zw32, SHUFFLE(2,0,2,0));
w = _mm_shuffle_ps(zw10, zw32, SHUFFLE(3,1,3,1));

}

3-Component AoS to SoA3-Component AoS to SoA
x1x1 z0z0 y0y0 x0x0

y2y2 x2x2 z1z1 y1y1

z3z3 y3y3 x3x3 z2z2

x1x1 x2x2 x3x3 x0x0

or

or

x3x3 x2x2 x1x1 x0x0

shuffle

x1x1 z0z0 y0y0 x0x0

y2y2 x2x2 z1z1 y1y1

z3z3 y3y3 x3x3 z2z2

y2y2 y3y3 y0y0 y1y1

y3y3 y2y2 y1y1 y0y0

shuffle

or

or

x1x1 z0z0 y0y0 x0x0

y2y2 x2x2 z1z1 y1y1

z3z3 y3y3 x3x3 z2z2

z3z3 z0z0 z1z1 z2z2

z3z3 z2z2 z1z1 z0z0

shuffle

or

or

x1x1 z0z0 y0y0 x0x0

load

y2y2 x2x2 z1z1 y1y1loadz3z3 y3y3 x3x3 z2z2

load
z3z3 y3y3 x3x3 z2z2 y2y2 x2x2 z1z1 y1y1 x1x1 z0z0 y0y0 x0x0 aosIn

XYZXYZXYZXYZ

Defining SSE Bit MasksDefining SSE Bit Masks

•• No valid No valid floatfloat with bit pattern needed?with bit pattern needed?
•• Define aligned static array of four integersDefine aligned static array of four integers
•• Load it at runtime as packed Load it at runtime as packed floatfloatss
•• Implemented as a macro Implemented as a macro CONST_INT32_PSCONST_INT32_PS

#define CONST_INT32_PS(N, V3,V2,V1,V0) \
static const _MM_ALIGN16 int _##N[]= \

{V0, V1, V2, V3};/*little endian!*/ \
const F32vec4 N = _mm_load_ps((float*)_##N);

// usage example, mask for elements 3 and 1:
CONST_INT32_PS(mask31, ~0, 0, ~0, 0);

Swizzling 3-Component AoS to SoA CodeSwizzling 3-Component AoS to SoA Code

void XYZtoF32vec4(F32vec4& x, y, z, XYZ* aosIn)
{
F32vec4 a, b, c;
CONST_INT32_PS(mask30, ~0, 0, 0, ~0); // etc.

a = _mm_load_ps((float*)aosIn);
b = _mm_load_ps(((float*)aosIn) + 4);
c = _mm_load_ps(((float*)aosIn) + 8);

x = (a & mask30) | (b & mask2) | (c & mask1);
y = (a & mask1) | (b & mask30) | (c & mask2);
z = (a & mask2) | (b & mask1) | (c & mask30);

x = _mm_shuffle_ps(x, x, _MM_SHUFFLE(1,2,3,0));
y = _mm_shuffle_ps(y, y, _MM_SHUFFLE(2,3,0,1));
z = _mm_shuffle_ps(z, z, _MM_SHUFFLE(3,0,1,2));

}

Gatherers: Cross-Half-MovesGatherers: Cross-Half-Moves
Move lower (higher) half of the second operand to Move lower (higher) half of the second operand to

higher (lower) half of the first operandhigher (lower) half of the first operand

a3a3 a2a2 a1a1 a0a0 b1b1 b0b0 a1a1 a0a0

_mm__mm_movemovelhlh__psps((aa,, bb))

b3b3 b2b2 b1b1 b0b0

a3a3 a2a2 a1a1 a0a0 a3a3 a2a2 b3b3 b2b2

_mm__mm_movemovehlhl__psps((aa,, bb))

b3b3 b2b2 b1b1 b0b0

m
em

or
y

lo
ca

l v
ar

-s

Scatter-Gathering + SwizzlingScatter-Gathering + Swizzling
x x3x3 x2x2 x1x1 x0x0

shuffle(2,0,2,0)

x32

XYZW

x3x3

x1x1

x0x0

x2x2

(movelh)movelh

00 x0x000 x1x1

(movelh)

movelh

00 x2x200 x3x3 x10

load_ss

00 x2x200 00 x2x2

load_ss
00 x0x000 00 x0x0

load_ss

x1x100 00 00 x1x1

load_ss

00 x3x300 00 x3x3

Chief Unswizzler: UnpackChief Unswizzler: Unpack

a3a3 a2a2 a1a1 a0a0b3b3 b2b2 b1b1 b0b0

b3b3 a3a3 b2b2 a2a2

unpack_unpack_highhigh((aa,, bb))

Two lower(higher) elements from the first operand and two Two lower(higher) elements from the first operand and two
lo(hi) ones from the second are lo(hi) ones from the second are interleavedinterleaved

a3a3 a2a2 a1a1 a0a0b3b3 b2b2 b1b1 b0b0

b1b1 a1a1 b0b0 a0a0

unpack_unpack_lowlow((aa,, bb))

m
em

or
y

lo
ca

l v
ar

-s

Data Unswizzling with SIMD SoA to AoSData Unswizzling with SIMD SoA to AoS

aosOut

XYZW

y3y3 y2y2 y1y1 y0y0

w3w3 z3z3 y3y3 x3x3 w2w2 z2z2 y2y2 x2x2 w1w1 z1z1 y1y1 x1x1 w0w0 z0z0 y0y0 x0x0

x3x3 x2x2 x1x1 x0x0

XYZWXYZWXYZW

xy

y1y1 x1x1 y0y0 x0x0

unpack_low

y3y3 x3x3 y2y2 x2x2

unpack_high

y0y0 x0x0

storelo

y1y1 x1x1

storehi

y2y2 x2x2

storelo

y3y3 x3x3

storehi

Similar steps for z, w!Similar steps for z, w!Similar steps for z, w!

m
em

or
y

lo
ca

l v
ar

-s

Data Unswizzling with SIMD SoA to AoS
(continued)
Data Unswizzling with SIMD SoA to AoS
(continued)

aosOut

XYZW

w3w3 w2w2 w1w1 w0w0

w3w3 z3z3 y3y3 x3x3 w2w2 z2z2 y2y2 x2x2 w1w1 z1z1 y1y1 x1x1 w0w0 z0z0 y0y0 x0x0

z3z3 z2z2 z1z1 z0z0

XYZWXYZWXYZW

zw

w1w1 z1z1 w0w0 z0z0

unpack_low

w3w3 z3z3 w2w2 z2z2

unpack_high

y0y0 x0x0

storelo

y1y1 x1x1

storehi

y2y2 x2x2

storelo

y3y3 x3x3

storehi

m
em

or
y

lo
ca

l v
ar

-s

SoA to AoS with Streaming StoreSoA to AoS with Streaming Store

aosOut

XYZW

w3w3 z3z3 y3y3 x3x3 w2w2 z2z2 y2y2 x2x2 w1w1 z1z1 y1y1 x1x1 w0w0 z0z0 y0y0 x0x0

XYZWXYZWXYZW

y3y3 x3x3 y2y2 x2x2w3w3 z3z3 w2w2 z2z2wz32 xy32

w2w2 z2z2 y2y2 x2x2

stream

w3w3 z3z3 y3y3 x3x3

stream

w2w2 z2z2 y2y2 x2x2

shuffle

w3w3 z3z3 y3y3 x3x3

shuffle

Data Restructuring SummaryData Restructuring Summary

•• Use SIMDUse SIMD--friendly friendly SoA SoA or Hybrid structures or Hybrid structures
whenever possiblewhenever possible

•• Use SSE/2 to swizzle SIMDUse SSE/2 to swizzle SIMD--unfriendly structures unfriendly structures
before processingbefore processing

•• Use SSE/2 to store results of SIMD processing into Use SSE/2 to store results of SIMD processing into
SIMDSIMD--unfriendly structures (unfriendly structures (unswizzlingunswizzling))

•• Look for more restructuring solutions in Bonus Look for more restructuring solutions in Bonus
Foils!Foils!

AgendaAgenda

Exploiting ParallelismExploiting Parallelism
Data RestructuringData Restructuring
Data CompressionData Compression
Conditional Code with SIMDConditional Code with SIMD
SummarySummary
Bonus FoilsBonus Foils

Data Compression with IntegersData Compression with Integers

FP value inside a known range can be mapped into a FP value inside a known range can be mapped into a
compacter compacter intint valuevalue

Example: Example: --1.0..+1.0 1.0..+1.0 �������� --/+SHRT_MAX/+SHRT_MAX

Application examples: facet Application examples: facet normalsnormals, lighting , lighting normalsnormals, ,
landscape heights…landscape heights…

 :rangesymmetric for

 :rangesymmetric for

range

range

range

range

i
f

if
ii
ffiiff

f
i

fi
ff
iiffii

⋅=
−
−⋅−+=












⋅=









−
−⋅−+=

;)(

;)(

minmax

minmax
minmin

minmax

minmax
minmin

short s; float f;
s = (short)round(f * SHRT_MAX);
f = float(s) * (1.0f / SHRT_MAX);

SIMD Short ���� SIMD Float
Conversion with SSE2
SIMD Short ���� SIMD Float
Conversion with SSE2

0000 0000 0000 0000z

1111 0000 1111 00001111 1111 0000 0000s

> ?cmpgt_epi16

0000 0000 0000 0000

ma m3m3 m2m2 m1m1 m0m0

x1x1 x0x0x3x3 x2x2A

mb m7m7 m6m6 m5m5 m4m4

x5x5 x4x4x7x7 x6x6B

cvtepi32_ps

m m7m7 m6m6 m5m5 m4m4 m3m3 m2m2 m1m1 m0m0

unpacklo_epi16

Data Compression SummaryData Compression Summary

•• Save memory traffic and cache space by Save memory traffic and cache space by
[de]compressing data on[de]compressing data on--thethe--flyfly

•• Use SSE / SSE2 for type conversionsUse SSE / SSE2 for type conversions
•• Swizzle short integer data before Swizzle short integer data before

conversion conversion –– achieve wider parallelismachieve wider parallelism

AgendaAgenda

Exploiting ParallelismExploiting Parallelism
Data RestructuringData Restructuring
Data CompressionData Compression
Conditional Code with SIMDConditional Code with SIMD
SummarySummary
Bonus FoilsBonus Foils

Conditions without BranchesConditions without Branches
R = (R = (AA << BB)?)? CC :: DD //remember: everything packed

0.00.0A

B

0.00.0 --3.03.0 3.03.0

0.00.0 1.01.0 --5.05.0 5.05.0
cmpltcmplt

0000000000 1111111111 0000000000 1111111111

andand
c3c3 c2c2 c1c1 c0c0

0000000000 c2c2 0000000000 c0c0

nandnand
d3d3 d2d2 d1d1 d0d0

d3d3 0000000000 d1d1 0000000000

oror
d3d3 c2c2 d1d1 c0c0

Conditions without Branches CodeConditions without Branches Code

// R = (A < B)? C : D

F32vec4 mask = cmplt(a, b);
r = (mask & c) | _mm_nand_ps(mask, d);

// OR, using F32vec4 friend function:
r = select_lt(a, b, c, d);

Conditional Processing with SSE / SSE2Conditional Processing with SSE / SSE2

••ScalarScalar ••SSE / SSE2SSE / SSE2

calculate c

if (a < b)

else

calculate d

calculate c
calculate d

mask = cmplt(a, b)

r = c

r = d

r = (mask & c) |
nand(mask, d)

Utilize data-level and instruction-level parallelism!Utilize dataUtilize data--level and instructionlevel and instruction--level parallelism!level parallelism!

Branch Hub: MovemaskBranch Hub: Movemask

F32vec4 mask = cmplt(a, b);
switch (move_mask(mask)) {

case 0: // handle f-f-f-f
case 1: // handle f-f-f-t
.... // handle other cases
case 15: // handle t-t-t-t

}

if (move_mask(mask)) {
// do only if at least one is true
// can be logic-conditional here
}

0.00.0 0.00.0 --3.03.0 3.03.0

0.00.0 1.01.0 --5.05.0 5.05.0
cmpltcmplt

0000000000 1111111111 0000000000 1111111111

A

B

movemaskmovemask
000000 00 11 00 11

One jump is better than many!One jump is better than manyOne jump is better than many!!

Conditional Processing with SSE / SSE2,
Movemask
Conditional Processing with SSE / SSE2,
Movemask
••ScalarScalar ••SSE/SSE2, SSE/SSE2, MovemaskMovemask

calculate c

if (a < b)

else

calculate d
calculate c
calculate d

mask = cmplt(a, b)

r = c

r = d

r = (mask&c)|nand(mask,d)

calculate c

switch (move_mask(mask))

case 0x0:
calculate d

r = c

case 0xf:

r = d
default:

SIMD for Conditional Code SummarySIMD for Conditional Code Summary

•• You can successfully use SSE/SSE2 even You can successfully use SSE/SSE2 even
with conditional, branchy codewith conditional, branchy code

•• Replace branches with logic or Replace branches with logic or
computationcomputation

•• Reduce total number of branches with Reduce total number of branches with
movemaskmovemask

•• Look for more examples in Bonus FoilsLook for more examples in Bonus Foils

AgendaAgenda

Exploiting ParallelismExploiting Parallelism
Data RestructuringData Restructuring
Data CompressionData Compression
Conditional Code with SIMDConditional Code with SIMD
SummarySummary
Bonus FoilsBonus Foils

What Is in Bonus Foils?What Is in Bonus Foils?

Using Automatic Using Automatic VectorizerVectorizer
• Compiler can do SSE/SSE2 for you!

More Conditional Code with SIMDMore Conditional Code with SIMD
• Abs function, flag accumulation (“clipping”), test

passed counting…

Applying SSE/SSE2 to Scalar CodeApplying SSE/SSE2 to Scalar Code
• What if algorithm is inherently scalar?

or there are no long data arrays?

• Still get performance with SSE/SSE2!

Summary: Call to ActionSummary: Call to Action

•• Accelerate all your critical code with SSE / Accelerate all your critical code with SSE /
SSE2 processingSSE2 processing

•• Make your data SIMDMake your data SIMD--friendlyfriendly
•• Use SSE / SSE2 for onUse SSE / SSE2 for on--thethe--fly data fly data swizzling swizzling

and [de]compressionand [de]compression
•• Use SSE / SSE2 comparisons & logic to Use SSE / SSE2 comparisons & logic to

replace conditional codereplace conditional code
•• Extend your own SSE/SSE2 Toolbox!Extend your own SSE/SSE2 Toolbox!

http://developer.intel.com/design/pentium4/
http://developer.intel.com/IDS
http://developer.http://developer.intelintel.com/design/pentium4/.com/design/pentium4/
http://developer.http://developer.intelintel.com/IDS.com/IDS

Bonus FoilsBonus Foils

Bonus FoilsBonus Foils

Using AutomaticUsing Automatic VectorizerVectorizer
More Conditional Code with SIMDMore Conditional Code with SIMD
Applying SIMD to Scalar CodeApplying SIMD to Scalar Code

Using Intel Compiler’s Automatic
Vectorizer
Using Intel Compiler’s Automatic
Vectorizer

•• Now that SSE/SSE2 is so easy, the compiler Now that SSE/SSE2 is so easy, the compiler
can do it for you!can do it for you!

•• Steps to using Automatic Steps to using Automatic VectorizerVectorizer::
1.1. Understand for yourself how to Understand for yourself how to SIMDizeSIMDize
2.2. Prepare and align the data structuresPrepare and align the data structures
3.3. Provide hints such as Provide hints such as unaliased unaliased pointerspointers
4.4. Invoke Automatic Invoke Automatic VectorizerVectorizer
5.5. SIMDizeSIMDize remaining critical code with Vector Classes and remaining critical code with Vector Classes and

IntrinsicsIntrinsics

Invoking Automatic VectorizerInvoking Automatic Vectorizer

--O2O2 “optimize for speed”“optimize for speed”
• standard Visual C++* Release build setting

--QaxWQaxW “optimize using SSE and SSE2”“optimize using SSE and SSE2”
• also invokes Automatic Vectorizer

• auto-versions optimized code for compatibility

• ignored by Microsoft* C++ compiler

--QvecQvec_report3 “report on _report3 “report on vectorizationvectorization””
See Intel Compiler documentation for more power See Intel Compiler documentation for more power

options!options!

-O2 -QaxW -Qvec_report3

Automatic Vectorizer in ActionAutomatic Vectorizer in Action
void MbyV(float* xi, float* yi, float* zi, float* wi,

float* restrict xo, float* restrict yo,
float* restrict zo, float* restrict wo)

{
__assume_aligned(xi, 16); ... // same for yi,zi,wi
for (int i = 0; i < ARRAY_COUNT; i++) {

float x = xi[i]; float y = yi[i];
float z = zi[i]; float w = wi[i];
wr = 1.0 / (x * matrix[3][0] + y * matrix[3][1] +

z * matrix[3][2] + w * matrix[3][3]);
xo[i] = wr * (x * matrix[0][0] + y * matrix[0][1]

+ z * matrix[0][2] + w * matrix[0][3]);
yo[i] = wr * (x * matrix[1][0] + y * matrix[1][1]

+ z * matrix[1][2] + w * matrix[1][3]);
zo[i] = wr * (x * matrix[2][0] + y * matrix[2][1]

+ z * matrix[2][2] + w * matrix[2][3]);
wo[i] = wr; } }

Bonus FoilsBonus Foils

Using Automatic Using Automatic VectorizerVectorizer
More Conditional Code with SIMDMore Conditional Code with SIMD
Applying SIMD to Scalar CodeApplying SIMD to Scalar Code

Implementing Abs with LogicImplementing Abs with Logic

•• Reminder: SIMD FP formatReminder: SIMD FP format

•• CodeCode

// r = abs(a)
CONST_INT32_PS(smask,

~(1<<31), ~(1<<31), ~(1<<31), ~(1<<31));
r = smask & a;

002222232330303131

SS ExponentExponent SignificandSignificand S = S = 1, 1, if negativeif negative
0, 0, if nonif non--negneg

a3a3A a2a2 a1a1 a0a0

Flag Accumulation: Original Scalar CodeFlag Accumulation: Original Scalar Code

char clip = 0;

if (v->x < xmin)
clip |= LEFTCLIP;

else if (v->x > xmax)
clip |= RIGHTCLIP;

if (v->y < ymin)
clip |= TOPCLIP;

else if (v->y > ymax)
clip |= BOTTOMCLIP;

Flag Accumulation with SSE / SSE2Flag Accumulation with SSE / SSE2

100.0100.0 99.999.9 363.7363.7 54.354.3

100.0100.0 100.0100.0 100.0100.0 100.0100.0
cmpltcmplt

0000000000 1111111111 0000000000 1111111111

x

xmin

0001000010 0001000010 0001000010 0001000010leftclip
and

0000000000 0001000010 0000000000 0001000010clip

Flag Accumulation with SSE / SSE2 CodeFlag Accumulation with SSE / SSE2 Code

DEFCONST_INT_PS(leftclip, LEFTCLIP);
... // DEFCONST for rightclip, topclip, botclip
F32vec4 clip, mask;
__m128i iclip;
unsigned uclip;

mask = cmplt(sx, ps_xmin);
clip = mask & leftclip;
mask = cmpgt(sx, ps_xmax);
clip |= mask & rightclip;
mask = cmplt(sy, ps_ymin);
clip |= mask & topclip;
mask = cmpgt(sy, ps_ymax);
clip |= mask & botclip;
// pack int32 ���� int8
iclip = (__m128i&)clip; // cast type
iclip = _mm_packs_epi32(iclip, iclip); // pack 32 ���� 16
iclip = _mm_packus_epi16(iclip, iclip); // pack 16 ���� 8
uclip = _mm_cvtsi128_si32(iclip); // move to int

Test Passed CountingTest Passed Counting
0000000000 1111111111 0000000000 1111111111

movemaskmovemask
000000 00 11 00 11

static const int bitcount[16] = {
0, // 0 == 0000
1, // 1 == 0001
1, // 2 == 0010
2, // 3 == 0011
....
4 // 15 == 1111

};
F32vec4 mask = cmplt(a, b);
npassed = bitcount[move_mask(mask)];

Bonus FoilsBonus Foils

Using Automatic Using Automatic VectorizerVectorizer
More Conditional Code with SIMDMore Conditional Code with SIMD
Applying SIMD to Scalar CodeApplying SIMD to Scalar Code

Applying SIMD to Scalar CodeApplying SIMD to Scalar Code

SSE can be applicable inside a scalar algorithm SSE can be applicable inside a scalar algorithm
without global without global parallelizationparallelization

Accelerate general processing with SSE operationsAccelerate general processing with SSE operations
• SSE registers are more efficient than x87

• SSE divide, square root – rcp, rsqrt

• type conversions – cvtsi2ss, cvt(t)ss2si…

• comparisons – comiss, comisd

Accelerate operations common to all Accelerate operations common to all
heterogeneous componentsheterogeneous components

Is It Really-Really Scalar?Is It Really-Really Scalar?
�� In most cases, can easily load scalar In most cases, can easily load scalar

data into SSE/SSE2 operandsdata into SSE/SSE2 operands
––Load four random 3Load four random 3--comp vectors:comp vectors:

void XYZToF32vec4(F32vec4& x, y, z, const XYZ* p0, p1, p2, p3)
{
CONST_INT32_PS(m20, 0,~0,0,~0); // mask for elements 2, 0
F32vec4 a, b, c, d, e;

a = _mm_loadu_ps(&p0->x); // --,z0,y0,x0
b = _mm_loadu_ps((&p1->x) - 1); // z1,y1,x1,--
c = (m20 & a) | andnot(m20, b); // z1,z0,x1,x0
b = (m20 & b) | andnot(m20, a); // --,y1,y0,--

a = _mm_loadu_ps(&p2->x); // --,z2,y2,x2
d = _mm_loadu_ps((&p3->x) - 1); // z3,y3,x3,--
e = (m20 & a) | andnot(m20, d); // z3,z2,x3,x2
d = (m20 & d) | andnot(m20, a); // --,y3,y2,--

x = _mm_movelh_ps(c, e); // x3,x2,x1,x0
z = _mm_movehl_ps(e, c); // z3,z2,z1,z0
y = _mm_shuffle_ps(b, d, _MM_SHUFFLE(2,1,2,1)); // y3,y2,y1,y0

}

Avoiding SIMD Catches for Scalar DataAvoiding SIMD Catches for Scalar Data

Example: load XYZ vector as SSE operandExample: load XYZ vector as SSE operand
Catch 1: MisalignmentCatch 1: Misalignment

• loadlo, loadhi slow when not 8-byte aligned

Catch 2: FP “Junk” dataCatch 2: FP “Junk” data

• Junk data leads to “special” values in math operations �
slowdown!

F32vec4 v; XYZ* vec;
x = _mm_loadl_pi(&vec->x);
v = _mm_movelh_ps(x, _mm_load_ss(&vec->z));

x = _mm_loadu_ps(&vec->x);

Loading XYZ Vector as
SSE Operand, Good Way
Loading XYZ Vector as
SSE Operand, Good Way

F32vec4 v;
XYZ* vec;
v = _mm_loadu_ps(&vec->x);
v = v & mask210;
// OR:
// v = _mm_shuffle_ps(v, v,
// _MM_SHUFFLE(2,2,1,0));

�� One slow unaligned load, one logicOne slow unaligned load, one logic
�� Junk data masked outJunk data masked out
�� Aligned load would be much fasterAligned load would be much faster
�� Data alignment is still important!Data alignment is still important!

Loading XYZ Vector as
SSE Operand, Better Way
Loading XYZ Vector as
SSE Operand, Better Way

F32vec4 v, y, z;
XYZ* vec;
v = _mm_load_ss(&vec->x); // 0,0,0,x
y = _mm_load_ss(&vec->y); // 0,0,0,y
z = _mm_load_ss(&vec->z); // 0,0,0,z
v = _mm_movelh_ps(v, y); // 0,y,0,x
v = _mm_shuffle_ps(v, z, S(2,0,2,0));

�� Three fast loads, two shufflesThree fast loads, two shuffles
�� ~1.3x faster than non~1.3x faster than non--aligned SIMD loadaligned SIMD load
�� ~2x slower than aligned SIMD~2x slower than aligned SIMD

SIMD Element SumupSIMD Element Sumup

•• Used widely in SIMDUsed widely in SIMD--forfor--Scalar codeScalar code
•• Requires two sequential shufflesRequires two sequential shuffles
inline F32vec1 sumup(F32vec4 x)
{
x += _mm_movehl_ps(x, x);
((F32vec1&)x) += _mm_shuffle_ps(x, x, S(3,2,1,1));
return x;

}

Parallel Element SumupsParallel Element Sumups

Four element Four element sumups sumups in parallelin parallel
1.5 independent shuffles per 1.5 independent shuffles per sumupsumupinline F32vec4 sumup(F32vec4 a, b, c, d)
{
a = unpack_low(a, b) + unpack_high(a, b);

// b3+b1b3+b1, a3+a1a3+a1, b2+b0b2+b0, a2+a0a2+a0
c = unpack_low(c, d) + unpack_high(c, d);

// d3+d1d3+d1, c3+c1c3+c1, d2+d0d2+d0, c2+c0c2+c0
b = _mm_movelh_ps(a, c);

// d2+d0d2+d0, c2+c0c2+c0, b2+b0b2+b0, a2+a0a2+a0
d = _mm_movehl_ps(c, a);

// d3+d1d3+d1, c3+c1c3+c1, b3+b1b3+b1, a3+a1a3+a1
a = b + d;
return a;

}

Vector Normalize, SSE SIMDVector Normalize, SSE SIMD

•• Element Element sumupsumup considered earlierconsidered earlier
•• 5 shuffles, 2 multiplies5 shuffles, 2 multiplies
•• Aligning data would speed it up!Aligning data would speed it up!

F32vec4 v, s;
F32vec1 t;
v = _mm_loadu_ps(inVec);
v = v & mask210;

s = v * v;
t = sumup3(s); // sum up 3 lower elements only
t = rsqrt_nr(t); // SSE scalar
v *= _mm_shuffle_ps(t, t, S(0,0,0,0));

_mm_storeu_ps(outVec, v);

Vector Normalize, SSE ScalarVector Normalize, SSE Scalar

F32vec1 x, y, z, t;
x = _mm_load_ss(&inVec->x);
y = _mm_load_ss(&inVec->y);
z = _mm_load_ss(&inVec->z);
t = x * x + y * y + z * z;
t = rsqrt_nr(t); // SSE scalar
x *= t;
y *= t;
z *= t;
_mm_store_ss(&outVec->x, x);
_mm_store_ss(&outVec->y, y);
_mm_store_ss(&outVec->z, z);

•• 0 shuffles, 6 multiplies, 0 shuffles, 6 multiplies, reschedulable reschedulable loadsloads
•• ~20% faster than unaligned SSE SIMD~20% faster than unaligned SSE SIMD
•• ~15% slower than aligned SSE SIMD~15% slower than aligned SSE SIMD

SSE SIMD or SSE Scalar?SSE SIMD or SSE Scalar?

•• Depends on memory loads to processing Depends on memory loads to processing
operation ratiooperation ratio

•• Aligned load / store are the fastestAligned load / store are the fastest
•• Homogeneous component processing is Homogeneous component processing is

faster with packed operationsfaster with packed operations
•• Load / store of separate components is Load / store of separate components is

more efficient than unaligned SIMD loadmore efficient than unaligned SIMD load

Matrix by Vector, Smart ScalarMatrix by Vector, Smart Scalar

*

* =

* =

* =

* =
+

SIMD for Scalar Code SummarySIMD for Scalar Code Summary

•• Inherently scalar algorithms also benefit Inherently scalar algorithms also benefit
from SSE / SSE2from SSE / SSE2

•• Aligning data is still important!Aligning data is still important!
•• Do not tolerate junk data elementsDo not tolerate junk data elements
•• Use SSE / SSE2 fast operations: reciprocal, Use SSE / SSE2 fast operations: reciprocal,

compares, conversionscompares, conversions

SIMD SynonymsSIMD Synonyms
Nouns:Nouns:

• SSE = SSE / SSE2 = SSE2 = SIMD

• “SIMD operand consists of {four} elements”

Adjectives:Adjectives:
• SIMD data = vectorized data = packed data

Verbs:Verbs:
• SIMDize = vectorize = parallelize

Afternoon BreakAfternoon Break

Architecture: SIMD computation &
the memory game
Architecture: SIMD computation &
the memory game

Haim BaradHaim Barad
Staff EngineerStaff Engineer

Intel CorporationIntel Corporation

barad@barad@acmacm.org.org

SIMD ComputationSIMD Computation

•• Single Instruction, Multiple DataSingle Instruction, Multiple Data
•• Almost all architectures have itAlmost all architectures have it
•• Useful for vector style computationUseful for vector style computation

• E.g. Transform four vertices in parallel

Streaming SIMD Extensions*
Registers
Streaming SIMD Extensions*
Registers

Eight 4-wide
Single-Precision
FP registers

1-bit sign
8-bit exponent
23-bit mantissa

03132127

022233031

Packed OperationsPacked Operations

xmm0

xmm1

xmm0

a0a1a2a3

b0b1b2b3

a0 op b0a1 op b1a2 op b2a3 op b3

op is one of
•addps
•subps
•mulps
•divps

Horizontal or Vertical?Horizontal or Vertical?

Horizontal Horizontal –– find parallelism within the find parallelism within the
computationcomputation

Vertical Vertical –– use serial task sequence, but use serial task sequence, but
operate on multiple data pointsoperate on multiple data points

Vertical is often preferredVertical is often preferred

Dependencies limit instruction parallelismDependencies limit instruction parallelism
• Code development from serial code is easier

Modify data structures to support vertical Modify data structures to support vertical
parallelism have better cache localityparallelism have better cache locality
• “Structure of Arrays” versus “Array of Structures”

SOA versus AOSSOA versus AOS

•• AOS (Array Of Structures)AOS (Array Of Structures)

•• SOA (Structure of Arrays)SOA (Structure of Arrays)

X0, X1, X2, X3, … Y0, Y1, Y2, Y3, … Z0, Z1, Z2, Z3, ...

X0, Y0, Z0, Nx0, Ny0, Nz0, U0, V0,
X1, Y1, Z1, Nx1, Ny1, Nz1, U0, V0, …

Better cacheability

Better SIMD calculations

Matrix Vector MultiplyMatrix Vector Multiply

Typical 3D operationTypical 3D operation
Load values in SOA formatLoad values in SOA format

• xxxx…, yyyy…, zzzz…

Follow with multiply and add operationsFollow with multiply and add operations
movapsmovaps xmm0, [list+X+xmm0, [list+X+ecxecx];load X components];load X components

movapsmovaps xmm2, [list+Y+xmm2, [list+Y+ecxecx];load Y components];load Y components

movapsmovaps xmm3, [list+Z+xmm3, [list+Z+ecxecx];load Z components];load Z components

movapsmovaps xmm1, [xmm1, [esiesi+m00] ;m00 m00 m00 m00+m00] ;m00 m00 m00 m00

movapsmovaps xmm4, [xmm4, [esiesi+m01] ;m01 m01 m01 m01+m01] ;m01 m01 m01 m01

Matrix Vector Multiply (cont.)Matrix Vector Multiply (cont.)

Accumulate results…Accumulate results…
We’ve just done four dot products in parallel!We’ve just done four dot products in parallel!

mulpsmulps xmm1, xmm0xmm1, xmm0 ;x*m00 x*m00 x*m00 x*m00;x*m00 x*m00 x*m00 x*m00

mulpsmulps xmm4, xmm2xmm4, xmm2 ;y*m01 y*m01 y*m01 y*m01;y*m01 y*m01 y*m01 y*m01

addpsaddps xmm4, xmm1xmm4, xmm1 ;add the 2 results;add the 2 results

movapsmovaps xmm1, [xmm1, [esiesi+m02];load matrix element m02 (x4)+m02];load matrix element m02 (x4)

mulpsmulps xmm1, xmm3xmm1, xmm3 ;z*m02 z*m02 z*m02 z*m02;z*m02 z*m02 z*m02 z*m02

addpsaddps xmm4, xmm1xmm4, xmm1 ;add results;add results

addpsaddps xmm4, [xmm4, [esiesi+m03];add last element of matrix+m03];add last element of matrix

Loop back to pick up next 4 vertices…

The Memory Party GameThe Memory Party Game

If you can’t bring data in fast enough or spit it out If you can’t bring data in fast enough or spit it out
fast enough…fast enough…

• SIMD is of little or no use

• You are now limited by bandwidth!

Processinginput output

Invite the data ahead of time…Invite the data ahead of time…

Prefetch Prefetch -- hides latency by bringing in data before hides latency by bringing in data before
you need ityou need it

Cache latency still existsCache latency still exists
• Be careful to prefetch far enough in advance

Watch resource limitationsWatch resource limitations
• Prefetching too much can thrash the cache

• Limitations on number of fill buffers

• Six in recent Pentium® III Processors
• Over 20 in Pentium® 4 Processors

Prefetch illustratedPrefetch illustrated

System
memory

L1

L2

prefetchnta [esi]

Prefetching data…Prefetching data…

loop

movaps xmm1, [edx + ebx]

movaps xmm2, [edx + ebx + 16]

;Prefetch next iteration data into cache

prefetchnta [edx + ebx + 32]

; … perform calculations on this iteration…

; …

add ebx,32

cmp ebx, buff_size

jl loop

Quick exit from the party…Quick exit from the party…

Streaming stores Streaming stores -- stream output data stream output data
directly to system memory without directly to system memory without
updating cachesupdating caches

Or, write directly to nonOr, write directly to non--cachable cachable memory memory
such as AGPsuch as AGP

Streaming store illustratedStreaming store illustrated

memory

L1

L2

movntps [esi]

xmm0

No write allocation*

* If store was a cache hit,
then data goes to cache
and is not written
directly to memory

Optimizations Strategy LabOptimizations Strategy Lab

Haim Barad Haim Barad
Staff EngineerStaff Engineer

Intel CorporationIntel Corporation

Haim.Barad@intel.comHaim.Barad@intel.com

Lab overviewLab overview

A simple 3D geometry engineA simple 3D geometry engine
• Pipeline architecture

• SIMD implementation

AnalysisAnalysis
• Time and event based sampling

• Optimizations to further improve performance

Lab files and optionsLab files and options

Main.Main.cpp cpp has options for different pipeshas options for different pipes
• Scalar vs. SIMD

• Single-pass vs. Multipass

• SOA vs. AOS

Prefetches Prefetches can be enabled for SIMD pipecan be enabled for SIMD pipe
• Put prefetches in soa_SP_SIMD_pipe.cpp

Analysis stepsAnalysis steps

Run app in VTune under TBSRun app in VTune under TBS
• Notice hot spots in the profile results

Track down causesTrack down causes
• Cache misses are likely in this app

• Measure with EBS (L2 misses)

Prefetch optimizationPrefetch optimization

L2 Cache misses: SIMD pipe
before prefetch optimization
L2 Cache misses: SIMD pipe
before prefetch optimization

Cache misses on
position loads

Allocate for
writing results

L2 Cache misses: SIMD pipe after
prefetch optimization
L2 Cache misses: SIMD pipe after
prefetch optimization

Load latency
is gone!

We still have
allocate for
writing results

Processor & Platform Analysis ToolsProcessor & Platform Analysis Tools

Dean Macri Dean Macri
Technical Marketing EngineerTechnical Marketing Engineer

Intel CorporationIntel Corporation

dean.p.macri@intel.comdean.p.macri@intel.com

What We’ll Talk About Today…What We’ll Talk About Today…

•• Platform performance issuesPlatform performance issues
•• Optimizations 101Optimizations 101
•• Finding the Finding the Hot SpotHot Spot??
•• Analysis techniquesAnalysis techniques
•• Try it out! (lab)Try it out! (lab)

Platform Performance IssuesPlatform Performance Issues

Software increasingly needs to be multiSoftware increasingly needs to be multi--platformplatform
• You don’t always develop on your target machine!

Platforms vary in many waysPlatforms vary in many ways
• CPU horsepower, ISA, memory, graphics adapter

Optimizations should be focused where they can Optimizations should be focused where they can
add the most value!add the most value!
• Once you’ve got a solid algorithm, optimize to the target

platform

Typical Excuses of Sub-Optimal
Performance
Typical Excuses of Sub-Optimal
Performance

1. Not My Code!
2. Drivers
3. OS
4. Compiler
5. Processor

Typical Causes of Sub-Optimal
Performance
Typical Causes of Sub-Optimal
Performance

Poorly written codePoorly written code
• Function calls for small, high frequency routines

Inefficient use of dataInefficient use of data
• Bad cache coherence, data alignment, etc.

Poorly matching code to underlying platform Poorly matching code to underlying platform
/ processor architecture/ processor architecture

‘gotchas’ in specific architectures‘gotchas’ in specific architectures
Find the bottleneck!

Optimizations 101Optimizations 101

Step 1: The Benchmark: The Benchmark
• Run the benchmark and record the performance.

Step 2: Find the hot spot: Find the hot spot
• Run the benchmark using a profiler to identify

which areas of the application are consuming the
most time.

Step 3: Optimize and verify the : Optimize and verify the
improvementimprovement

Use the Funnel ApproachUse the Funnel Approach

Visible Differences

1,000’ View 1,000’ View -- Frame rate, responsivenessFrame rate, responsiveness

Whole System

100’ view 100’ view –– systemsystem--wide eventswide events

Whole Application

10’ view 10’ view –– ApplicationApplication--specific specific
eventsevents

Single function

1’ view 1’ view ---- Function level Function level
eventsevents

Integrated in app.

System Monitor,
IPM, Vtune,
SProf

Vtune, NuMega
TrueTime, GProf

Vtune, PCL, PerfAPI, Roll
your
own

1000’ View Monitoring1000’ View Monitoring

Other Metrics:Other Metrics:
• Object

count

• Memory

• etc.

Triangles Rendered /
Frame

Frames / Sec

Texture
Usage

Lights,
Visibility

100’ View Monitoring100’ View Monitoring

Vtune - Shows all the software
running in the system. Larger

bars are consuming more time.

System Monitor --
Displays events for

various objects over time.

100’ View Monitoring100’ View Monitoring

Vtune - Chronologies displays
events over time like System

Monitor.

Sprof - Unix/Linux tool for
profiling the system and

applications

3rd Party Hardware Counters for
Chronologies
3rd Party Hardware Counters for
Chronologies

System Monitor supports 3rd party countersSystem Monitor supports 3rd party counters
• Special purpose .DLLs for accessing hardware

VTune is extensible by 3rd partiesVTune is extensible by 3rd parties
• Simple SDK available for creating .DLLs

Graphics IHV’s can use to optimize titles for their Graphics IHV’s can use to optimize titles for their
hardwarehardware
• Give performance .DLL to title ISV

• ISV uses VTune/SysMon to get max performance

10’ View Monitoring10’ View Monitoring

There are profiling counters There are profiling counters
built into most processorsbuilt into most processors
Can sample on more than Can sample on more than
just time!just time!

• L1 and L2 cache misses,
Branch mispredictions,
partial register stalls

Can also compute ratios Can also compute ratios
• clocks per instructions, bus

utilization, data access
versus cache misses

Call Graph ProfilingCall Graph Profiling

Goal is to get function call graph and call listGoal is to get function call graph and call list
• Parents and children

• Time for itself and itself + all children

• Find the critical path Critical
path is blue

1’ View Monitoring1’ View Monitoring

Roll your ownRoll your own
• Write a privileged driver

• Instrument your code

Use a preUse a pre--rolled toolrolled tool
• IPM

• Vtune API

• PCL - Performance Counter Library

• PerfAPI

Controlling ProfilingControlling Profiling

Add code to configure, start, and stop Add code to configure, start, and stop
profiling within your appprofiling within your app
• specific to VTune, IPM, PCL, PerfAPI, etc.

Rebuild your app and run it to collect dataRebuild your app and run it to collect data
Use a GUI or database viewer to analyze the Use a GUI or database viewer to analyze the

resultsresults

int VtStartSampling(comment string);

int VtStopSampling (void);

int VtConfigSampling(options, interrupt type,

SamplingIntervalInMicroSec, SampleBufferSizeInBytes,

MaxSamples,Duration,StartDelay,SamplesFileName,

EventCode, EBSSampleAfter);

The Start, Stop, and Config APIsThe Start, Stop, and Config APIs

Profile code without the GUIProfile code without the GUI
Data file is generated which is imported into VTune Data file is generated which is imported into VTune

for analysisfor analysis
Great for testing multiple configurationsGreat for testing multiple configurations
Include VTuneApi.h, link VTuneApi.libInclude VTuneApi.h, link VTuneApi.lib

Questions?Questions?

Try It Out - LabsTry It Out - Labs

Optimizations for Handheld &
Embedded Devices
Optimizations for Handheld &
Embedded Devices

Haim BaradHaim Barad
IntelIntel

Handheld platforms (PDAs)Handheld platforms (PDAs)

PDAs PDAs (e.g. Palm Pilot, Compaq iPaq)(e.g. Palm Pilot, Compaq iPaq)
Embedded CPUs = low power Embedded CPUs = low power ⇒⇒⇒⇒⇒⇒⇒⇒ battery life!battery life!
Performance is now an important factorPerformance is now an important factor

• Video

• 2D players (e.g. video and Flash)

• 3D apps/games

• Speech recognition

Performance factorsPerformance factors

This class of chips (e.g. This class of chips (e.g. StrongARMStrongARM))
• Have no floating point hardware!

• Have no integer divide!

• Smaller caches than desktop CPUs

• Multiply units – “early out” (small finishes faster)

Performance RoadmapPerformance Roadmap

Intel Intel XScaleXScale
• Ramp to 1GHz (demonstrated at Spring IDF 2001)

• New architectural features

•MAC w/40-bit accumulator

• Manufactured on advanced process

•High frequency, low power!

Platform factorsPlatform factors

Small displays (320x240)Small displays (320x240)
• Smaller textures are required (mip mapping)

• Lower resolution models are ok

• Landscape mode has linear memory access

Small depth of display (up to 16Small depth of display (up to 16--bit)bit)
• Reformat and resize textures

Optimizations StepsOptimizations Steps

No floating point No floating point –– CRITICAL STEP!!!CRITICAL STEP!!!
• Emulation is VERY slow (~50x)

• Use fixed point instead

• Smaller operands finish faster than larger

• Be careful of precision and dynamic range

Optimizations Steps (cont)Optimizations Steps (cont)

Be careful of cache sizesBe careful of cache sizes
• Current StrongArm has 16K/8K (I/D) caches

• XScale will have 32K/32K/2K (I/D/mini-D) caches

Be careful of compiler generated codeBe careful of compiler generated code
• Tools are not yet as mature as desktop versions

• Many OSs to support

Optimized libraries are availableOptimized libraries are available
• Intel’s Integrated Performance Primitives (IPP)

Example of power and performanceExample of power and performance

A Small DemoA Small Demo

Course SummaryCourse Summary

Online ReferencesOnline References

A master link page for this course is atA master link page for this course is at
• optimizations.org

Check for updates to materials!Check for updates to materials!

